MODIS Collection 6 MAIAC algorithm

This paper describes the latest version of the algorithm MAIAC used for processing the MODIS Collection 6 data record. Since initial publication in 2011–2012, MAIAC has changed considerably to adapt to global processing and improve cloud/snow detection, aerosol retrievals and atmospheric correction of MODIS data. The main changes include (1) transition from a 25 to 1 km scale for retrieval of the spectral regression coefficient (SRC) which helped to remove occasional blockiness at 25 km scale in the aerosol optical depth (AOD) and in the surface reflectance, (2) continuous improvements of cloud detection, (3) introduction of smoke and dust tests to discriminate absorbing fineand coarsemode aerosols, (4) adding over-water processing, (5) general optimization of the LUT-based radiative transfer for the global processing, and others. MAIAC provides an interdisciplinary suite of atmospheric and land products, including cloud mask (CM), column water vapor (CWV), AOD at 0.47 and 0.55 μm, aerosol type (background, smoke or dust) and fine-mode fraction over water; spectral bidirectional reflectance factors (BRF), parameters of Ross-thick Lisparse (RTLS) bidirectional reflectance distribution function (BRDF) model and instantaneous albedo. For snow-covered surfaces, we provide subpixel snow fraction and snow grain size. All products come in standard HDF4 format at 1 km resolution, except for BRF, which is also provided at 500 m resolution on a sinusoidal grid adopted by the MODIS Land team. All products are provided on per-observation basis in daily files except for the BRDF/Albedo product, which is reported every 8 days. Because MAIAC uses a time series approach, BRDF/Albedo is naturally gap-filled over land where missing values are filled-in with results from the previous retrieval. While the BRDF model is reported for MODIS Land bands 1–7 and ocean band 8, BRF is reported for both land and ocean bands 1–12. This paper focuses on MAIAC cloud detection, aerosol retrievals and atmospheric correction and describes MCD19 data products and quality assurance (QA) flags.

[1]  A. Kokhanovsky,et al.  Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign , 2009 .

[2]  Alexei Lyapustin,et al.  Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis , 2012 .

[3]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[4]  P Koepke,et al.  Effective reflectance of oceanic whitecaps. , 1984, Applied optics.

[5]  J. Schwartz,et al.  Developing particle emission inventories using remote sensing (PEIRS) , 2017, Journal of the Air & Waste Management Association.

[6]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[7]  Ranga B. Myneni,et al.  Prototyping of LAI and FPAR Retrievals from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Data , 2017, Remote. Sens..

[8]  Alexei Lyapustin,et al.  A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions , 2013 .

[9]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[10]  Alexei Lyapustin,et al.  Using High-Resolution Satellite Aerosol Optical Depth To Estimate Daily PM2.5 Geographical Distribution in Mexico City. , 2015, Environmental science & technology.

[11]  James J. Simpson,et al.  Cloud shadow detection under arbitrary viewing and illumination conditions , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  David P. Roy,et al.  MODIS land data storage, gridding, and compositing methodology: Level 2 grid , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  Alexei Lyapustin,et al.  Validation of high‐resolution MAIAC aerosol product over South America , 2017 .

[14]  C. Tucker,et al.  Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction , 2012 .

[15]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[16]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[17]  Ramesh P. Singh,et al.  Optical Properties of Fine/Coarse Mode Aerosol Mixtures , 2010 .

[18]  Yujie Wang,et al.  Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements , 2014 .

[19]  J. Schwartz,et al.  A critical assessment of high resolution aerosol optical depth (AOD) retrievals for fine particulate matt r (PM) predictions , 2013 .

[20]  Alexei Lyapustin,et al.  Estimation of daily PM10 concentrations in Italy (2006-2012) using finely resolved satellite data, land use variables and meteorology. , 2017, Environment international.

[21]  Shobha Kondragunta,et al.  Evaluation of the multi‐angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET , 2017, Journal of geophysical research. Atmospheres : JGR.

[22]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  Ranga B. Myneni,et al.  Amazon Forests' Response to Droughts: A Perspective from the MAIAC Product , 2016, Remote. Sens..

[24]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[25]  D. Roy,et al.  The MODIS Land product quality assessment approach , 2002 .

[26]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[27]  Luana S. Basso,et al.  Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange , 2016, Global change biology.

[28]  T. Oki,et al.  Evapotranspiration seasonality across the Amazon Basin , 2017 .

[29]  Alfredo Huete,et al.  Dry-season greening of Amazon forests , 2016, Nature.

[30]  M. Wendisch,et al.  IPRT polarized radiative transfer model intercomparison project – Phase A , 2015, 1901.01813.

[31]  C. Tucker,et al.  Remote sensing of tropical ecosystems: Atmospheric correction and cloud masking matter , 2012 .

[32]  Rene Preusker,et al.  Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer , 2005 .

[33]  Neill Prohaska,et al.  Leaf flush drives dry season green-up of the Central Amazon , 2016 .

[34]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[35]  Thomas Hilker,et al.  Climate drivers of the Amazon forest greening , 2017, PloS one.

[36]  Qingyang Xiao,et al.  Full-coverage high-resolution daily PM 2.5 estimation using MAIAC AOD in the Yangtze River Delta of China , 2017 .

[37]  Amit Angal,et al.  Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Ramakrishna R. Nemani,et al.  Numerical Terradynamic Simulation Group 12-2014 Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability , 2018 .

[39]  F. Gao,et al.  Estimation of Crop Gross Primary Production (GPP): Fapar(sub Chl) Versus MOD15A2 FPAR , 2014 .

[40]  Yujie Wang,et al.  An automatic cloud mask algorithm based on time series of MODIS measurements , 2008 .

[41]  Y. Knyazikhin,et al.  Green's Function Method for the Radiative Transfer Problem. I. Homogeneous non-Lambertian Surface. , 2001, Applied optics.

[42]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[43]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[44]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[45]  Yujie Wang,et al.  Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. , 2016, Environmental science & technology.

[46]  Alexei Lyapustin,et al.  Interpolation and Profile Correction (IPC) Method for Shortwave Radiative Transfer in Spectral Intervals of Gaseous Absorption , 2003 .

[47]  Lorraine A. Remer,et al.  Suomi‐NPP VIIRS aerosol algorithms and data products , 2013 .

[48]  Yujie Wang,et al.  High spatial resolution aerosol retrieval with MAIAC: Application to mountain regions , 2011 .

[49]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[50]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[51]  Alexei Lyapustin,et al.  Observation of mountain lee waves with MODIS NIR column water vapor , 2014 .

[52]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[53]  J. Barnard,et al.  Comparison of columnar water-vapor measurements from solar transmittance methods. , 2001, Applied optics.

[54]  Yoram J. Kaufman,et al.  A New Algorithm for Retrieving Aerosol Properties Over Land from MODIS Spectral Reflectance , 2006 .

[55]  Claudia J. Stubenrauch,et al.  A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat , 2010 .

[56]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[57]  Anup K. Prasad,et al.  Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India , 2009 .

[58]  Kelly K. Caylor,et al.  Photosynthetic seasonality of global tropical forests constrained by hydroclimate , 2015 .

[59]  Pak Wai Chan,et al.  A multi‐sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong , 2013 .

[60]  O. Torres,et al.  Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America , 2019, Atmospheric Measurement Techniques.

[61]  C. Tucker,et al.  Vegetation dynamics and rainfall sensitivity of the Amazon , 2014, Proceedings of the National Academy of Sciences.

[62]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[63]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[64]  Thomas Hilker,et al.  Consistency of vegetation index seasonality across the Amazon rainforest , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[65]  Matthew O. Jones,et al.  Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests , 2015 .

[66]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[67]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[68]  A. Just,et al.  A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data. , 2014, Atmospheric environment.

[69]  Alexei Lyapustin,et al.  Discrimination of biomass burning smoke and clouds in MAIAC algorithm , 2012 .

[70]  Thomas Hilker,et al.  On the measurability of change in Amazon vegetation from MODIS , 2015 .

[71]  Y. Kaufman,et al.  Dynamic aerosol model: Urban/industrial aerosol , 1998 .

[72]  Alexei Lyapustin,et al.  Retrieval of snow grain size over Greenland from MODIS. , 2009 .

[73]  Eleonora P Zege,et al.  Scattering optics of snow. , 2004, Applied optics.

[74]  S. Piketh,et al.  A seasonal trend of single scattering albedo in southern African biomass‐burning particles: Implications for satellite products and estimates of emissions for the world's largest biomass‐burning source , 2013 .

[75]  A. Lyapustin,et al.  Radiative transfer code SHARM for atmospheric and terrestrial applications. , 2005, Applied optics.

[76]  Nandita Singh,et al.  Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. , 2017, Environmental pollution.

[77]  Xiaoxiong Xiong,et al.  Cross calibration of ocean-color bands from moderate resolution imaging spectroradiometer on Terra platform. , 2008, Applied optics.

[78]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .