Analysis and Improved Methods for the Error Estimation of Numerical Solutions in Solid and Multibody Dynamics

A posteriori error estimators are useful tools in general purpose numerical computations because they provide an automatic, quantitative assessment of the accuracy of the results. Without some sort of error estimation the validity of any numerical results relies solely on the analyst experience and good judgment. While these are also necessary, they fail to be quantitative and are thus prone to mistakes.

[1]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[2]  Nils-Erik Wiberg,et al.  A Post-Processing Technique and an a Posteriori Error Estimate for the Newmark Method in Dynamic Analysis , 1993 .

[3]  Nils-Erik Wiberg,et al.  Adaptive finite element procedures for linear and non‐linear dynamics , 1999 .

[4]  Infiltration from buried pipes in unsaturated soils , 1990 .

[5]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[6]  Gregory M. Hulbert,et al.  Automatic time step control algorithm for structural dynamics , 1995 .

[7]  Ignacio Romero,et al.  Analysis of error estimators for the semidiscrete equations of linear solid and structural dynamics , 2006 .

[8]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[9]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[10]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[11]  Melvin L. Baron,et al.  Journal of the Engineering Mechanics Division , 1956 .

[12]  Ignacio Romero,et al.  A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics , 2006 .

[13]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[14]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[15]  Nils-Erik Wiberg,et al.  A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis , 1992 .

[16]  Sang H. Lee,et al.  Expedient implicit integration with adaptive time stepping algorithm for nonlinear transient analysis , 1990 .

[17]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[18]  I. Romero,et al.  Error estimation for the HHT method in non-linear solid dynamics , 2007 .

[19]  R. Skeel Thirteen ways to estimate global error , 1986 .

[20]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .