Knowledge Discovery in Spatial Databases Progress and Challenges

Spatial data, i.e., data related to objects that occupy space, are continuosly being collected for various applications ranging from remote sensing, geographical information systems (GIS) to computer cartography and environmental assesment and planing. The volume of data collected is so huge that it has become humanely impossible to do any intelligent data analysis. Even though very few methods have been proposed and applied to discover knowledge from spatial data, it is evident that the techniques from machine learning , database technology and statistics have to be explored and modiied for further progress in this eld. In this paper we intend to survey the progress and outline some challenges facing spatial data mining.

[1]  A. Guttman,et al.  A Dynamic Index Structure for Spatial Searching , 1984, SIGMOD 1984.

[2]  Beng Chin Ooi,et al.  Discovery of General Knowledge in Large Spatial Databases , 1993 .

[3]  Arno Siebes,et al.  Data Mining: the search for knowledge in databases. , 1994 .

[4]  Hans-Peter Kriegel,et al.  Combination of Spatial Access Methods and Computational Geometry in Geographic Database Systems , 1991, SSD.

[5]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[6]  Andrew K. C. Wong,et al.  Statistical Technique for Extracting Classificatory Knowledge from Databases , 1991, Knowledge Discovery in Databases.

[7]  Jiawei Han Knowledge Discovery in Object-Oriented and Active Databases , 1993 .

[8]  Douglas H. Fisher,et al.  Iterative Optimization and Simplification of Hierarchical Clusterings , 1996, J. Artif. Intell. Res..

[9]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[10]  Pietro Perona,et al.  Knowledge Discovery in Large Image Databases: Dealing with Uncertainties in Ground Truth , 1994, KDD Workshop.

[11]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[12]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  RÓ ÚiÎT Knowledge Discovery in Object-Oriented and Active Databases , .

[14]  D. Bell,et al.  Evidence Theory and Its Applications , 1991 .

[15]  Hans-Peter Kriegel,et al.  Knowledge Discovery in Large Spatial Databases: Focusing Techniques for Efficient Class Identification , 1995, SSD.

[16]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[17]  AgrawalRakesh,et al.  Mining association rules between sets of items in large databases , 1993 .

[18]  Padhraic Smyth,et al.  Image database exploration: progress and challenges , 1993 .

[19]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[20]  R. Ng,et al.  Eecient and Eeective Clustering Methods for Spatial Data Mining , 1994 .

[21]  Martin L. Kersten,et al.  Architectural Support for Data Mining , 1994, KDD Workshop.

[22]  Anthony G. Cohn,et al.  Qualitative and Topological Relationships in Spatial Databases , 1993, SSD.

[23]  Rangasami L. Kashyap,et al.  An Object-Oriented Knowledge Representation for Spatial Information , 1988, IEEE Trans. Software Eng..

[24]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[25]  Jiawei Han,et al.  Knowledge Discovery in Databases: An Attribute-Oriented Approach , 1992, VLDB.

[26]  Douglas H. Fisher,et al.  Improving Inference through Conceptual Clustering , 1987, AAAI.

[27]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[28]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[29]  Walid G. Aref,et al.  Extending a DBMS with Spatial Operations , 1991, SSD.

[30]  Dimitris Papadias,et al.  Topological Inference , 1995, IJCAI.

[31]  Usama M. Fayyad,et al.  Knowledge Discovery in Databases: An Overview , 1997, ILP.