Protocols of quantum key agreement solely using Bell states and Bell measurement

Two protocols of quantum key agreement (QKA) that solely use Bell state and Bell measurement are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. The proposed protocols are also generalized to implement QKA using a set of multi-partite entangled states (e.g., 4-qubit cluster state and $$\Omega $$Ω state). Security of these protocols arises from the monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.

[1]  Vivek Kothari,et al.  On the group-theoretic structure of a class of quantum dialogue protocols , 2013 .

[2]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[3]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[4]  Marco Genovese,et al.  Experimental realization of counterfactual quantum cryptography , 2011, 1107.5467.

[5]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[6]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[7]  Fei Gao,et al.  Cryptanalysis of a multi-party quantum key agreement protocol with single particles , 2013, Quantum Information Processing.

[8]  Chitra Shukla,et al.  Hierarchical quantum communication , 2013, 1301.0498.

[9]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[10]  Yang Liu,et al.  Experimental demonstration of counterfactual quantum communication. , 2011, Physical review letters.

[11]  Alfred Menezes,et al.  Authenticated Diffie-Hellman Key Agreement Protocols , 1998, Selected Areas in Cryptography.

[12]  Nicolas Gisin,et al.  Linking Classical and Quantum Key Agreement: Is There a Classical Analog to Bound Entanglement? , 2002, Algorithmica.

[13]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[14]  Runhua Shi,et al.  Multi-party quantum key agreement with bell states and bell measurements , 2012, Quantum Information Processing.

[15]  Anirban Pathak,et al.  Elements of Quantum Computation and Quantum Communication , 2013 .

[16]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[17]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2005, Physical review letters.

[18]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[19]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[20]  Guihua Zeng,et al.  Quantum key agreement protocol , 2004 .

[21]  Nguyen Ba An Quantum dialogue , 2004 .

[22]  Fei Gao,et al.  Multiparty quantum key agreement with single particles , 2012, Quantum Information Processing.

[23]  Alessio Avella,et al.  Experimental quantum-cryptography scheme based on orthogonal states , 2010 .

[24]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[25]  M. van Dijk,et al.  Quantum key agreement , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[26]  Xunru Yin,et al.  Three-Party Quantum Key Agreement with Two-Photon Entanglement , 2013 .

[27]  Goldenberg,et al.  Quantum cryptography based on orthogonal states. , 1995, Physical review letters.

[28]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[29]  R. Srikanth,et al.  BEYOND THE GOLDENBERG–VAIDMAN PROTOCOL: SECURE AND EFFICIENT QUANTUM COMMUNICATION USING ARBITRARY, ORTHOGONAL, MULTI-PARTICLE QUANTUM STATES , 2012 .

[30]  Min Ren,et al.  Experimental demonstration of counterfactual quantum key distribution , 2010, 1003.4621.

[31]  Chia-Wei Tsai,et al.  Improvement on “Quantum Key Agreement Protocol with Maximally Entangled States” , 2011 .

[32]  Zhiwei Sun,et al.  Improvements on “multiparty quantum key agreement with single particles” , 2013, Quantum Inf. Process..

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  Tzonelih Hwang,et al.  Quantum key agreement protocol based on BB84 , 2010 .