Spill Response Evaluation Using an Oil Spill Model

Numerical simulation was used to evaluate the effectiveness of an oil spill response plan developed by Western Canada Marine Response Corporation (WCMRC) for the southwest coast of Canada. The plan was part of the permitting process for a proposed terminal expansion that would result in an increase in tanker traffic. The purpose of this response evaluation was to point the way to the development of a risk-informed enhanced oil spill response capacity that would be capable of managing large spills in coastal British Columbia. The oil spill weathering and tracking model, SPILLCALC, was used for the evaluation, and was modified to meet the needs of this study. Three-dimensional currents and water properties were provided by the hydrodynamic model, H3D; waves were simulated using the wave model, SWAN, and winds were obtained from the local network of coastal light stations and wind buoys. Booms and skimmers were the two primarily mitigation methods considered here. Mitigation inputs such as deployment time, storage capacity and speed were based on existing and proposed equipment stored in the main WCMRC facility and at outlying caches. Results confirmed the need to reduce the time to first response due to the effects of currents on the floating oil and the close proximity of shorelines along the proposed shipping route. In addition, results validated the need to upgrade availability of early on-water storage capacity, which could be met by a large fast storage vessel, enabling the spill response to be more efficient and to obtain a much higher recovery rate.