Universal Meshes for the Simulation of Brittle Fracture and Moving Boundary Problems

Universal meshes have recently appeared in the literature as a compu- tationally efficient and robust paradigm for the generation of conforming simpli- cial meshes for domains with evolving boundaries. The main idea behind a univer- sal mesh is to immerse the moving boundary in a background mesh (the universal mesh), and to produce a mesh that conforms to the moving boundary at any given time by adjusting a few of elements of the background mesh. In this manuscript we present the application of universal meshes to the simulation of brittle fracturing. To this extent, we provide a high level description of a crack propagation algorithm and showcase its capabilities. Alongside universal meshes for the simulation of brit- tle fracture, we provide other examples for which universal meshes prove to be a powerful tool, namely fluid flow past moving obstacles. Lastly, we conclude the manuscript with some remarks on the current state of universal meshes and future directions.

[1]  Evan S. Gawlik,et al.  Supercloseness of Orthogonal Projections onto Nearby Finite Element Spaces , 2014, 1408.4104.

[2]  Masaki Sano,et al.  Instabilities of quasi-static crack patterns in quenched glass plates , 1997 .

[3]  María Cecilia Rivara,et al.  Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement , 2010, Adv. Eng. Softw..

[4]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[5]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[6]  Fernando Fraternali,et al.  Eigenfracture: An Eigendeformation Approach to Variational Fracture , 2009, Multiscale Model. Simul..

[7]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[8]  Ramsharan Rangarajan,et al.  Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes , 2014 .

[9]  A. Giacomini,et al.  DISCONTINUOUS FINITE ELEMENT APPROXIMATION OF QUASISTATIC CRACK GROWTH IN NONLINEAR ELASTICITY , 2006 .

[10]  R. Salganik,et al.  Brittle fracture of solids with arbitrary cracks , 1974 .

[11]  Jerrold E. Marsden,et al.  Variational r‐adaption in elastodynamics , 2008 .

[12]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[13]  F. Fraternali Free discontinuity finite element models in two-dimensions for in-plane crack problems , 2007 .

[14]  Sutthisak Phongthanapanich,et al.  Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis , 2004 .

[15]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[16]  Adrian J. Lew,et al.  High-order finite element methods for moving boundary problems with prescribed boundary evolution , 2014, 1405.2107.

[17]  M. Souli,et al.  ALE formulation for fluid–structure interaction problems , 2000 .

[18]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[19]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[20]  M. Ortiz,et al.  Solid modeling aspects of three-dimensional fragmentation , 1998, Engineering with Computers.

[21]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[22]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[23]  Enrico Babilio,et al.  Numerical solutions for crack growth based on the variational theory of fracture , 2012 .

[24]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[25]  Ercan Gürses,et al.  A robust algorithm for configurational‐force‐driven brittle crack propagation with R‐adaptive mesh alignment , 2007 .

[26]  Charbel Farhat,et al.  Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids , 2004 .

[27]  M. Ortiz,et al.  Modeling fracture by material-point erosion , 2013, International Journal of Fracture.

[28]  Ramsharan Rangarajan,et al.  Simulating curvilinear crack propagation in two dimensions with universal meshes , 2015 .

[29]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[30]  M. Ortiz,et al.  Computational micromechanics , 1996 .

[31]  Mircea Grigoriu,et al.  Probabilistic Fracture Mechanics: A Validation of Predictive Capability , 1990 .

[32]  RAMSHARAN RANGARAJAN,et al.  Analysis of a Method to Parameterize Planar Curves Immersed In Triangulations , 2011, SIAM J. Numer. Anal..

[33]  P. Krysl,et al.  Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture , 1999 .

[34]  Magdalena Ortiz,et al.  An eigenerosion approach to brittle fracture , 2012 .

[35]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[36]  Adrian J. Lew,et al.  Computing stress intensity factors for curvilinear cracks , 2015, 1501.03710.

[37]  T. Belytschko,et al.  Robust and provably second‐order explicit–explicit and implicit–explicit staggered time‐integrators for highly non‐linear compressible fluid–structure interaction problems , 2010 .

[38]  Nomura Takashi,et al.  ALE finite element computations of fluid-structure interaction problems , 1994 .

[39]  Charbel Farhat,et al.  Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations , 2003 .

[40]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[41]  Evan S. Gawlik,et al.  High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes , 2015 .

[42]  Adrian J. Lew,et al.  Unified Analysis of Finite Element Methods for Problems with Moving Boundaries , 2015, SIAM J. Numer. Anal..

[43]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .