On-substrate porous-anodic-alumina-assisted gold nanostructure arrays: Meeting the challenges of various sizes and interfaces

Abstract Arrays of 0- and 1-dimensional noble-metal nanostructures aligned on solid substrates are in demand for nanocatalysis, bio- and optical sensing, or biomolecular analysis. Here we introduce a range of advances based on a systematic research towards the porous-anodic-alumina (PAA)-assisted on-substrate arrays of gold nanostructures, such as rods and spheres, spatially-separated and highly aligned on a metal or semiconductor supporting layer via a blend of the anodizing, re-anodizing, and post-anodizing treatments applied to a thin layer of Al superimposed on selected valve metals (W, Ti, Hf), metal bilayers (W/Ti), or binary metal alloy layers (W-Ti). The achievements are due to (1) the improved self-organization in the PAA thin films during the self-localizing high-current anodization of the upper Al layer at challenging potentials ranging 100–250 V and 20 to 5 V, and (2) the enhanced penetration of the alumina barrier layer by the undergrowing metal oxide due to the increasing polarization (re-anodizing). The protrusions of the undergrown metal oxide can be either selectively dissolved away providing perfect nanoholes in the alumina barrier layer or left as formed in the barrier layer and annealed in vacuum to increase their electron conductance and serve as the supports for subsequent metal electrodeposition. Additionally, the in-situ amplitude-modulated constant-current pulse deposition mode combined with the original surface-wiping technique to remove the overdeposited gold allow for smooth nucleation and uniform finishing of perfect arrays of on-substrate gold nanospheres and nanorods, having diameters from 10 to over 250 nm and length up to 2.5 μm.

[1]  E. Llobet,et al.  Selective hydrogen detection with TiO2 nanofilm via the porous-alumina-assisted anodizing of titanium layers , 2014, IEEE SENSORS 2014 Proceedings.

[2]  J. Hubálek,et al.  Exploring Electron Transport and Memristive Switching in Nanoscale Au/WOx/W Multijunctions Based on Anodically Oxidized Al/W Metal Layers , 2016 .

[3]  E. Llobet,et al.  Hafnium-Oxide 3-D Nanofilms via the Anodizing of Al/Hf Metal Layers , 2018 .

[4]  E. Llobet,et al.  Evolution of Surface Morphology, Crystallite Size, and Texture of WO3 Layers Sputtered onto Si-Supported Nanoporous Alumina Templates , 2008 .

[5]  H. Asoh,et al.  Self-Ordering of Anodic Porous Alumina Induced by Local Current Concentration: Burning , 2004 .

[6]  W. J. Stępniowski,et al.  Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning , 2018 .

[7]  P. Kulesza,et al.  Templating of electrodeposited platinum group metals as a tool to control catalytic activity , 2007 .

[8]  C. Bittencourt,et al.  Formation–structure–properties of niobium-oxide nanocolumn arrays via self-organized anodization of sputter-deposited aluminum-on-niobium layers , 2014 .

[9]  P. Allongue,et al.  Metal electrodeposition on semiconductors: Part 2. Description of the nucleation processes , 1993 .

[10]  David T. Crouse,et al.  Self-ordered pore structure of anodized aluminum on silicon and pattern transfer , 2000 .

[11]  A. Mozalev,et al.  The formation of nanoporous membranes from anodically oxidized aluminium and their application to Li rechargeable batteries , 2001 .

[12]  A. W. Hassel,et al.  Nanostructured Columnlike Tungsten Oxide Film by Anodizing Al/W/Ti Layers on Si , 2008 .

[13]  A. Mozalev,et al.  The voltage–time behaviour for porous anodizing of aluminium in a fluoride-containing oxalic acid electrolyte , 2001 .

[14]  D. Losic,et al.  Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors , 2014, Materials.

[15]  S. Nagata,et al.  Formation of barrier-type amorphous anodic films on Ti–Mo alloys , 2003 .

[16]  Noelia Ramírez,et al.  Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. , 2018, Mass spectrometry reviews.

[17]  A. W. Hassel,et al.  Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si , 2009 .

[18]  G. Sulka Highly Ordered Anodic Porous Alumina Formation by Self‐Organized Anodizing , 2008 .

[19]  Derek Fawcett,et al.  Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development , 2011, Materials.

[20]  Tatsuya Kikuchi,et al.  Exploration for the Self-ordering of Porous Alumina Fabricated via Anodizing in Etidronic Acid , 2016 .

[21]  I. Roslyakov,et al.  Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching , 2017 .

[22]  Sachiko Ono,et al.  Controlling Factor of Self-Ordering of Anodic Porous Alumina , 2004 .

[23]  Huaping Zhao,et al.  Self‐Supported Metallic Nanopore Arrays with Highly Oriented Nanoporous Structures as Ideally Nanostructured Electrodes for Supercapacitor Applications , 2014, Advanced materials.

[24]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[25]  Yang Xu,et al.  Heterogeneous nanostructure array for electrochemical energy conversion and storage , 2018, Nano Today.

[26]  J. M. Montero-Moreno,et al.  Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques , 2009 .

[27]  T. Den,et al.  Multiwalled carbon nanotubes growth in anodic alumina nanoholes , 1999 .

[28]  X. Correig,et al.  Templated growth of tungsten oxide micro/nanostructures using aerosol assisted chemical vapour deposition , 2008 .

[29]  C. Thompson,et al.  Selective Barrier Perforation in Porous Alumina Anodized on Substrates , 2008 .

[30]  W. J. Stępniowski,et al.  Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition , 2015 .

[31]  Kenneth T. V. Grattan,et al.  Gold nanorod-based localized surface plasmon resonance biosensors: A review , 2014 .

[32]  T. Den,et al.  Electrodeposition of (001) oriented CoPt L10 columns into anodic alumina films , 2003 .

[33]  H. Terryn,et al.  Study of initiation and development of local burning phenomena during anodizing of aluminium under controlled convection , 2008 .

[34]  Kun-Hong Lee,et al.  The nanoporous structure of anodic aluminum oxide fabricated on the Au/Nb/Si substrate , 2009 .

[35]  C. Thompson,et al.  A Tungsten Interlayer Process for Fabrication of Through-Pore AAO Scaffolds on Gold Substrates , 2011 .

[36]  Z. G. Khim,et al.  Selective Wet-Chemical Etching of the Barrier Layer during Formation of Porous Anodic Aluminum Oxide Template , 2009 .

[37]  Xin Wang,et al.  New Gold Nanostructures for Sensor Applications: A Review , 2014, Materials.

[38]  Kun-Hong Lee,et al.  Controlled Electrochemical Dissolution of Anodic Aluminum Oxide for Preparation of Open-Through Pore Structures , 2007 .

[39]  K. Wada,et al.  Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate , 2002 .

[40]  Yu-Ming Lin,et al.  Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass , 2003 .

[41]  Carles Cané,et al.  Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen , 2010 .

[42]  J. Hubálek,et al.  The superhydrophobic properties of self-organized microstructured surfaces derived from anodically oxidized Al/Nb and Al/Ta metal layers , 2012 .

[43]  L. Casalis,et al.  Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds , 2016, Beilstein journal of nanotechnology.

[44]  Martin Moskovits,et al.  Nanowires formed in anodic oxide nanotemplates , 1994 .

[45]  Ilaria Mannelli,et al.  Recent advances in analytical and bioanalysis applications of noble metal nanorods , 2010, Analytical and bioanalytical chemistry.

[46]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[47]  Hideaki Takahashi,et al.  Anodic film growth on Al layers and Ta–Al metal bilayers in citric acid electrolytes , 2005 .

[48]  E. Llobet,et al.  Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes , 2016 .

[49]  Leszek Zaraska,et al.  Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays , 2012 .

[50]  A. Mozalev,et al.  Influence of nitrogen species on the porous-alumina-assisted growth of TiO2 nanocolumn arrays , 2018, Electrochimica Acta.

[51]  W. Lee,et al.  Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. , 2014, Chemical reviews.

[52]  A. Mozalev,et al.  Study of the initial stage of aluminium anodization in malonic acid solution , 1987 .

[53]  A. Fanigliulo,et al.  An in situ spectroelectrochemical Raman investigation of Au electrodeposition and electrodissolution in KAu(CN)2 solution , 2002 .

[54]  J. Castaño,et al.  Fabrication of highly-ordered TiO2 nanocolumns by two-step anodizing of an Al/Ti layer in etidronic acid , 2018, Materials Chemistry and Physics.

[55]  A. Mozalev,et al.  Effect of the anodization conditions on the growth and volume expansion of porous alumina films in malonic acid electrolyte , 2015 .

[56]  A. Mozalev,et al.  The growth and electrical transport properties of self-organized metal/oxide nanostructures formed by anodizing Ta-Al thin-film bilayers , 2005 .

[57]  Mengshi Lin,et al.  Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. , 2017, Journal of agricultural and food chemistry.

[58]  S. A. John,et al.  Fast growth of gold nanorods on solid substrate using electrochemically deposited gold seeds , 2014 .

[59]  E. Llobet,et al.  MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer , 2013 .

[60]  Diana C. Leitao,et al.  Nanoporous alumina as templates for multifunctional applications , 2014 .

[61]  Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease. , 2008, Nanotechnology.

[62]  A. Mozalev,et al.  Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film , 2003 .

[63]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .