Assessing Single Upconverting Nanoparticle Luminescence by Optical Tweezers.

We report on stable, long-term immobilization and localization of a single colloidal Er(3+)/Yb(3+) codoped upconverting fluorescent nanoparticle (UCNP) by optical trapping with a single infrared laser beam. Contrary to expectations, the single UCNP emission differs from that generated by an assembly of UCNPs. The experimental data reveal that the differences can be explained in terms of modulations caused by radiation-trapping, a phenomenon not considered before but that this work reveals to be of great relevance.

[1]  Jung Ho Yoo,et al.  Facile Synthesis of Ultrasmall and Hexagonal NaGdF4: Yb3+, Er3+ Nanoparticles with Magnetic and Upconversion Imaging Properties , 2010 .

[2]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[3]  M. Uchida,et al.  Micromanipulation: Whole-cell manipulation by optical trapping , 1995, Current Biology.

[4]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[5]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[6]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[7]  J. G. Solé,et al.  Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles. , 2013, Nanoscale.

[8]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[9]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[10]  Marco Pedroni,et al.  NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. , 2011, ACS nano.

[11]  N. Branda,et al.  Fluorescent Quenching of Lanthanide-Doped Upconverting Nanoparticles by Photoresponsive Polymer Shells , 2014 .

[12]  C. Hazra,et al.  Sub‐5 nm Ln3+‐doped BaLuF5 Nanocrystals: A Platform to Realize Upconversion via Interparticle Energy Transfer (IPET) , 2013, Advanced materials.

[13]  B. Shapiro,et al.  Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot , 2013, Nature Communications.

[14]  D. Jassby,et al.  Characterization of ZnS nanoparticle aggregation using photoluminescence. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[15]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[16]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[17]  L. Carlos,et al.  Lanthanide-based luminescent molecular thermometers , 2011 .

[18]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[19]  L. M. Maestro,et al.  Water (H2O and D2O) Dispersible NIR-to-NIR Upconverting Yb3+/Tm3+ Doped MF2 (M = Ca, Sr) Colloids: Influence of the Host Crystal , 2013 .

[20]  Ewa M Goldys,et al.  Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles. , 2014, The Analyst.

[21]  J Ricardo Arias-Gonzalez,et al.  Exploring mechanochemical processes in the cell with optical tweezers , 2006, Biology of the cell.

[22]  L. Oddershede,et al.  Optical Trapping of Nanoparticles and Quantum Dots , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  F. Auzel,et al.  Upconversion processes in coupled ion systems , 1990 .

[24]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[25]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[26]  D. Jaque,et al.  Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring. , 2015, Small.

[27]  Yong Zhang,et al.  Small upconverting fluorescent nanoparticles for biomedical applications. , 2010, Small.

[28]  G. Baldacchini,et al.  Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3 , 2003 .

[29]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[30]  L. Forró,et al.  Upconversion Particle as a Local Luminescent Brownian Probe: A Photonic Force Microscopy Study , 2014 .

[31]  Guanying Chen,et al.  Sensing Using Rare-Earth-Doped Upconversion Nanoparticles , 2013, Theranostics.

[32]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[33]  L. Oddershede,et al.  Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot. , 2014, Nanoscale.

[34]  Romain Quidant,et al.  Three-dimensional optical manipulation of a single electron spin. , 2013, Nature nanotechnology.

[35]  Artur Bednarkiewicz,et al.  Lanthanide-doped up-converting nanoparticles: Merits and challenges , 2012 .

[36]  Oliver Benson,et al.  Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ Codoped NaYF4 nanocrystals. , 2009, Nano letters.

[37]  Geoffrey A Ozin,et al.  Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. , 2011, Nano letters.

[38]  T. Fan,et al.  Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. , 1994, Optics letters.

[39]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[40]  Steffen B. Petersen,et al.  Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues , 2013 .

[41]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.