Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex

[1]  E. Cascales,et al.  Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system , 2017, EMBO reports.

[2]  C. Cambillau,et al.  Structure-Function Analysis of the TssL Cytoplasmic Domain Reveals a New Interaction between the Type VI Secretion Baseplate and Membrane Complexes. , 2016, Journal of molecular biology.

[3]  E. Cascales,et al.  Molecular Dissection of the Interface between the Type VI Secretion TssM Cytoplasmic Domain and the TssG Baseplate Component. , 2016, Journal of molecular biology.

[4]  Nichollas E. Scott,et al.  Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis , 2016, mBio.

[5]  Yingzhou Wu,et al.  Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems , 2016, Proceedings of the National Academy of Sciences.

[6]  L. Journet,et al.  Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut , 2016, Proceedings of the National Academy of Sciences.

[7]  Young Ah Goo,et al.  Strain competition restricts colonization of an enteric pathogen and prevents colitis , 2016, EMBO reports.

[8]  P. Freemont,et al.  TssA forms a gp6‐like ring attached to the type VI secretion sheath , 2016, The EMBO journal.

[9]  H. Stahlberg,et al.  Structure of the T4 baseplate and its function in triggering sheath contraction , 2016, Nature.

[10]  D. Goodlett,et al.  Human symbionts inject and neutralize antibacterial toxins to persist in the gut , 2016, Proceedings of the National Academy of Sciences.

[11]  N. Geva-Zatorsky,et al.  Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species , 2016, Proceedings of the National Academy of Sciences.

[12]  C. Cambillau,et al.  Priming and polymerization of a bacterial contractile tail structure , 2016, Nature.

[13]  Marek Basler,et al.  Type VI secretion system: secretion by a contractile nanomachine , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  E. Cascales,et al.  The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization , 2015, PLoS genetics.

[15]  A. Desmyter,et al.  Biogenesis and structure of a type VI secretion membrane core complex , 2015, Nature.

[16]  A. Desmyter,et al.  Camelid nanobodies: killing two birds with one stone. , 2015, Current opinion in structural biology.

[17]  Gabriel Waksman,et al.  Secretion systems in Gram-negative bacteria: structural and mechanistic insights , 2015, Nature Reviews Microbiology.

[18]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[19]  A. Desmyter,et al.  Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody , 2015, PloS one.

[20]  A. Desmyter,et al.  Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. , 2015, Acta crystallographica. Section F, Structural biology communications.

[21]  David Baker,et al.  Structure of the Type VI Secretion System Contractile Sheath , 2015, Cell.

[22]  Christian Cambillau,et al.  VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. , 2014, Trends in microbiology.

[23]  Christian Cambillau,et al.  Architecture and assembly of the Type VI secretion system. , 2014, Biochimica et biophysica acta.

[24]  F. Herzog,et al.  Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. , 2014, Cell reports.

[25]  A. Mogk,et al.  Type VI secretion system helps find a niche. , 2014, Cell host & microbe.

[26]  Alain Filloux,et al.  Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta , 2014, Cell host & microbe.

[27]  A. Prescott,et al.  Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex , 2014, The Biochemical journal.

[28]  C. Cambillau,et al.  Molecular Insights on the Recognition of a Lactococcus lactis Cell Wall Pellicle by the Phage 1358 Receptor Binding Protein , 2014, Journal of Virology.

[29]  J. Hénin,et al.  Type VI secretion and bacteriophage tail tubes share a common assembly pathway , 2014, EMBO reports.

[30]  S. Muyldermans,et al.  A general protocol for the generation of Nanobodies for structural biology , 2014, Nature Protocols.

[31]  Christian Cambillau,et al.  Structures and host-adhesion mechanisms of lactococcal siphophages , 2014, Front. Microbiol..

[32]  J. Mekalanos,et al.  A view to a kill: the bacterial type VI secretion system. , 2014, Cell host & microbe.

[33]  S. B. Peterson,et al.  Type VI secretion system effectors: poisons with a purpose , 2014, Nature Reviews Microbiology.

[34]  Matthew K Waldor,et al.  Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. , 2013, Cell host & microbe.

[35]  C. Cambillau,et al.  TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System* , 2013, The Journal of Biological Chemistry.

[36]  Y. Couté,et al.  Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane , 2013, Proteomics.

[37]  S. Coulthurst,et al.  The Type VI secretion system - a widespread and versatile cell targeting system. , 2013, Research in microbiology.

[38]  A. Desmyter,et al.  Viral infection modulation and neutralization by camelid nanobodies , 2013, Proceedings of the National Academy of Sciences.

[39]  J. Mekalanos,et al.  Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions , 2013, Cell.

[40]  A. Mogk,et al.  Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. , 2013, Current opinion in microbiology.

[41]  E. Cascales,et al.  Imaging type VI secretion-mediated bacterial killing. , 2013, Cell reports.

[42]  E. Bouveret,et al.  The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. , 2012, Methods.

[43]  Paul A. Wiggins,et al.  Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword , 2012, Proceedings of the National Academy of Sciences.

[44]  K. Ghosh,et al.  Structural and biochemical characterization of human adenylosuccinate lyase (ADSL) and the R303C ADSL deficiency-associated mutation. , 2012, Biochemistry.

[45]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[46]  C. Cambillau,et al.  Structural biology of type VI secretion systems , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  S. Casjens,et al.  Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. , 2012, Advances in experimental medicine and biology.

[48]  L. Journet,et al.  The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC , 2012, MicrobiologyOpen.

[49]  C. Cambillau,et al.  Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems* , 2012, The Journal of Biological Chemistry.

[50]  G. Jensen,et al.  Type VI secretion requires a dynamic contractile phage tail-like structure , 2012, Nature.

[51]  P. Freemont,et al.  Structure–function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa , 2011, Microbiology.

[52]  C. Cambillau,et al.  Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar , 2011, PLoS pathogens.

[53]  M. Rossmann,et al.  Morphogenesis of the T4 tail and tail fibers , 2010, Virology Journal.

[54]  Mark S. Thomas,et al.  Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? , 2010, Virulence.

[55]  A. Mogk,et al.  Tubules and donuts: a type VI secretion story , 2010, Molecular microbiology.

[56]  G. Sciara,et al.  Structure of lactococcal phage p2 baseplate and its mechanism of activation , 2010, Proceedings of the National Academy of Sciences.

[57]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[58]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[59]  R. Lloubès,et al.  The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall , 2010, Molecular microbiology.

[60]  E. Lai,et al.  An IcmF Family Protein, ImpLM, Is an Integral Inner Membrane Protein Interacting with ImpKL, and Its Walker A Motif Is Required for Type VI Secretion System-Mediated Hcp Secretion in Agrobacterium tumefaciens , 2009, Journal of bacteriology.

[61]  J. M. Sauder,et al.  Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin , 2009, Proceedings of the National Academy of Sciences.

[62]  A. Davidson,et al.  The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system , 2009, Proceedings of the National Academy of Sciences.

[63]  Frédéric Boyer,et al.  Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? , 2009, BMC Genomics.

[64]  R. Lloubès,et al.  SciN Is an Outer Membrane Lipoprotein Required for Type VI Secretion in Enteroaggregative Escherichia coli , 2008, Journal of bacteriology.

[65]  E. Cascales,et al.  The type VI secretion toolkit , 2008, EMBO reports.

[66]  Christopher M. Bailey,et al.  Type VI secretion: a beginner's guide. , 2008, Current opinion in microbiology.

[67]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[68]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[69]  Sylvain Moineau,et al.  Modular Structure of the Receptor Binding Proteins of Lactococcus lactis Phages , 2006, Journal of Biological Chemistry.

[70]  Jan Löwe,et al.  RF cloning: a restriction-free method for inserting target genes into plasmids. , 2006, Journal of biochemical and biophysical methods.

[71]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[72]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[73]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[74]  L. Wyns,et al.  Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology. , 2002, The Journal of biological chemistry.

[75]  C. Cambillau,et al.  Lateral recognition of a dye hapten by a llama VHH domain. , 2001, Journal of molecular biology.

[76]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  L. Wyns,et al.  Selection and identification of single domain antibody fragments from camel heavy‐chain antibodies , 1997, FEBS letters.

[78]  P. Leiman,et al.  Contractile tail machines of bacteriophages. , 2012, Advances in experimental medicine and biology.

[79]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[80]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[81]  Sylvain Moineau,et al.  Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses , 2006, Nature Structural &Molecular Biology.