Noncoding RNAs in disease

Noncoding RNAs are emerging as potent and multifunctional regulators in all biological processes. In parallel, a rapidly growing number of studies has unravelled associations between aberrant noncoding RNA expression and human diseases. These associations have been extensively reviewed, often with the focus on a particular microRNA (miRNA) (family) or a selected disease/pathology. In this Mini‐Review, we highlight a selection of studies in order to demonstrate the wide‐scale involvement of miRNAs and long noncoding RNAs in the pathophysiology of three types of diseases: cancer, cardiovascular and neurological disorders. This research is opening new avenues to novel therapeutic approaches.

[1]  Lianfeng Zhang,et al.  miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer's disease targets TGF-β type II receptor , 2010, Brain Research.

[2]  G. Ewald,et al.  Deep RNA Sequencing Reveals Dynamic Regulation of Myocardial Noncoding RNAs in Failing Human Heart and Remodeling With Mechanical Circulatory Support , 2014, Circulation.

[3]  Wei Zhao,et al.  Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer's disease via modulating the expression of miR-106b. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[4]  T. Tuschl,et al.  MicroRNA-24 Regulates Vascularity After Myocardial Infarction , 2011, Circulation.

[5]  D. Dembélé,et al.  Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy , 2011, Nature Structural &Molecular Biology.

[6]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[7]  J. M. Thomson,et al.  miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. , 2011, Genes & development.

[8]  A. Gabory,et al.  The H19 locus acts in vivo as a tumor suppressor , 2008, Proceedings of the National Academy of Sciences.

[9]  Y. Tomari,et al.  The Functions of MicroRNAs: mRNA Decay and Translational Repression. , 2015, Trends in cell biology.

[10]  D. Dornan,et al.  miR-221/222 Targets Adiponectin Receptor 1 to Promote the Epithelial-to-Mesenchymal Transition in Breast Cancer , 2013, PloS one.

[11]  Xavier Estivill,et al.  MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. , 2011, Human molecular genetics.

[12]  An-Yuan Guo,et al.  Bioinformatics analysis identifies miR-221 as a core regulator in hepatocellular carcinoma and its silencing suppresses tumor properties. , 2014, Oncology reports.

[13]  Mihaela Zavolan,et al.  miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. , 2015, Nature chemical biology.

[14]  Xiaoke Yin,et al.  Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. , 2014, The Journal of clinical investigation.

[15]  Lu Zhang,et al.  MicroRNA-150: A Novel Marker of Left Ventricular Remodeling After Acute Myocardial Infarction , 2013, Circulation. Cardiovascular genetics.

[16]  F. Slack,et al.  OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma , 2010, Nature.

[17]  D. Glavač,et al.  Long Non-Coding RNA in Cancer , 2013, International journal of molecular sciences.

[18]  Sheng Wang,et al.  The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression , 2017, Oncotarget.

[19]  Fani Sousa,et al.  Recombinant pre-miR-29b for Alzheimer´s disease therapeutics , 2016, Scientific Reports.

[20]  Howard Y. Chang,et al.  Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis , 2010, Nature.

[21]  C. Croce,et al.  miR-155: On the Crosstalk Between Inflammation and Cancer , 2009, International reviews of immunology.

[22]  The FANTOM Consortium and the RIKEN Genome Exploration Team,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002 .

[23]  R. Bourgon,et al.  miR-221/222 Targeting of Trichorhinophalangeal 1 (TRPS1) Promotes Epithelial-to-Mesenchymal Transition in Breast Cancer , 2011, Science Signaling.

[24]  Patrick J. Paddison,et al.  Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia , 2010, Nature Cell Biology.

[25]  Ju-Seog Lee,et al.  LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7 , 2013, Genes & development.

[26]  Yanjie Lu,et al.  A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. , 2012, The international journal of biochemistry & cell biology.

[27]  J. Mao,et al.  miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[28]  A. Delacourte,et al.  Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression , 2008, Proceedings of the National Academy of Sciences.

[29]  John P A Ioannidis,et al.  Clinical outcome prediction by microRNAs in human cancer: a systematic review. , 2012, Journal of the National Cancer Institute.

[30]  Q. Jiang,et al.  Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus , 2014, Cell Death and Disease.

[31]  C. Ramírez,et al.  miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression , 2012, Experimental Neurology.

[32]  A. Pasquinelli MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship , 2012, Nature Reviews Genetics.

[33]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[34]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[35]  W. Ritchie,et al.  Global MicroRNA Profiling of the Mouse Ventricles during Development of Severe Hypertrophic Cardiomyopathy and Heart Failure , 2012, PloS one.

[36]  John T. Powers,et al.  Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies , 2009, Nature Genetics.

[37]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[38]  E. Olson,et al.  Inhibition of miR-15 Protects Against Cardiac Ischemic Injury , 2012, Circulation research.

[39]  H. Hermeking,et al.  MicroRNAs in the p53 network: micromanagement of tumour suppression , 2012, Nature Reviews Cancer.

[40]  Z. Wang,et al.  miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases , 2015, Oncotarget.

[41]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[42]  F. Liu,et al.  The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489 , 2014, Circulation research.

[43]  F. Slack,et al.  MicroRNA therapeutics: towards a new era for the management of cancer and other diseases , 2017, Nature Reviews Drug Discovery.

[44]  K. Chowdhury,et al.  The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy , 2012, Nature Communications.

[45]  K. Kelnar,et al.  Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. , 2010, Cancer research.

[46]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[47]  Yong Li,et al.  Chinese Anti鄄 Cancer a Ssociation , 2022 .

[48]  B. Schroen,et al.  Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity. , 2016, Journal of molecular cell biology.

[49]  Ju-Seog Lee,et al.  LIN28B promotes colon cancer progression and metastasis. , 2011, Cancer research.

[50]  Dong-lin Zheng,et al.  Beta-asarone protects against MPTP-induced Parkinson's disease via regulating long non-coding RNA MALAT1 and inhibiting α-synuclein protein expression. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[51]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[52]  C. Wahlestedt,et al.  Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation , 2012, Nature Biotechnology.

[53]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[54]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[55]  A. Hochberg,et al.  The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory , 2015, Molecular Cancer.

[56]  R. Guigó,et al.  Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs , 2014, European heart journal.

[57]  V. Tarasov,et al.  Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest , 2007, Cell cycle.

[58]  Rodney Davis,et al.  Lymphoproliferative disease. , 2005, The Journal of urology.

[59]  G. Nuovo,et al.  MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. , 2009, Cardiovascular research.

[60]  C. Fan,et al.  Potential Value of miR-221/222 as Diagnostic, Prognostic, and Therapeutic Biomarkers for Diseases , 2017, Front. Immunol..

[61]  D. Catalucci,et al.  MicroRNA-133 Modulates the &bgr;1-Adrenergic Receptor Transduction Cascade , 2014, Circulation research.

[62]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[63]  Gaurav Kumar Pandey,et al.  The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. , 2014, Cancer cell.

[64]  Michael D. Schneider,et al.  Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure , 2008, Proceedings of the National Academy of Sciences.

[65]  J. Lieberman,et al.  miR-34 and p53: New Insights into a Complex Functional Relationship , 2015, PloS one.

[66]  F. Slack,et al.  Targeting noncoding RNAs in disease , 2017, The Journal of clinical investigation.

[67]  John McAnally,et al.  The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. , 2008, Developmental cell.

[68]  Jordan S. Pober,et al.  Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells , 2007, Circulation research.

[69]  Piero Carninci,et al.  Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells' differentiation in vitro and in neurochemical models of Parkinson's disease , 2015, Front. Cell. Neurosci..

[70]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[71]  Jin Yao,et al.  Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling. , 2016, Hypertension.

[72]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[73]  R. Duisters,et al.  MIRNA-133 AND MIRNA-30 REGULATE CONNECTIVE TISSUE GROWTH FACTOR: IMPLICATIONS FOR A ROLE OF MIRNAS IN MYOCARDIAL MATRIX REMODELING , 2013 .

[74]  Pablo Landgraf,et al.  Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. , 2007, Blood.

[75]  Hiromu Suzuki,et al.  Epigenetic alteration and microRNA dysregulation in cancer , 2013, Front. Genet..

[76]  Paulo P. Amaral,et al.  Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. , 2008, Genome research.

[77]  D. Standaert,et al.  microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease , 2016, The Journal of Neuroscience.

[78]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  G. Marti,et al.  Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity , 2009, Molecular Cancer Therapeutics.

[80]  A. Caflisch,et al.  A Small-Molecule Inhibitor of Lin28. , 2016, ACS chemical biology.

[81]  J. Hou,et al.  Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. , 2013, The Journal of urology.

[82]  Ming Sun,et al.  Long Noncoding RNA ANRIL Promotes Non–Small Cell Lung Cancer Cell Proliferation and Inhibits Apoptosis by Silencing KLF2 and P21 Expression , 2014, Molecular Cancer Therapeutics.

[83]  M. Snyder,et al.  Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes , 2015, Nature Genetics.

[84]  M. Menezes,et al.  The LIN28/let-7 Pathway in Cancer , 2017, Front. Genet..

[85]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[86]  J. Kalil,et al.  Myocardial Infarction-Associated Transcript, a Long Noncoding RNA, Is Overexpressed During Dilated Cardiomyopathy Due to Chronic Chagas Disease. , 2016, The Journal of infectious diseases.

[87]  D. Glavač,et al.  MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction , 2011, Disease markers.

[88]  L. Maquat,et al.  lncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3'UTRs via Alu elements , 2010, Nature.

[89]  Yongyi Ye,et al.  MiR‐124 Regulates Apoptosis and Autophagy Process in MPTP Model of Parkinson's Disease by Targeting to Bim , 2016, Brain pathology.

[90]  Huafeng Zhang,et al.  Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1 , 2014, Nature Communications.

[91]  Xiaoshu Cheng,et al.  Knockdown of Long Non‐Coding RNA‐ZFAS1 Protects Cardiomyocytes Against Acute Myocardial Infarction Via Anti‐Apoptosis by Regulating miR‐150/CRP , 2017, Journal of cellular biochemistry.

[92]  Hongwei Liang,et al.  MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy , 2017, Cell Death & Disease.

[93]  Y. Pinto,et al.  Conditional Dicer Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling , 2008, Circulation.

[94]  T. Golub,et al.  MicroRNA-1 Negatively Regulates Expression of the Hypertrophy-Associated Calmodulin and Mef2a Genes , 2009, Molecular and Cellular Biology.

[95]  F. Allain,et al.  Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28 , 2011, Nature Structural &Molecular Biology.

[96]  T. Morgan,et al.  Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase , 2008, Nature Medicine.

[97]  P. Falkai,et al.  microRNA‐34c is a novel target to treat dementias , 2011, The EMBO journal.

[98]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[99]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[100]  D. Amadori,et al.  Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers , 2016, Clinical Cancer Research.

[101]  A. Myers,et al.  Natural antisense transcripts. , 2014, Human molecular genetics.

[102]  Stefano Volinia,et al.  Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[103]  K. Chu,et al.  Altered Expression of the Long Noncoding RNA NEAT1 in Huntington’s Disease , 2017, Molecular Neurobiology.

[104]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[105]  Yusuke Nakamura,et al.  Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction , 2006, Journal of Human Genetics.

[106]  Ning Liu,et al.  Regulation of let-7 and its target oncogenes (Review). , 2012, Oncology letters.

[107]  Howard Y. Chang,et al.  Unique features of long non-coding RNA biogenesis and function , 2015, Nature Reviews Genetics.

[108]  M. Hristov,et al.  Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection , 2009, Science Signaling.

[109]  M. Duffy,et al.  Mutant p53 as a target for cancer treatment. , 2017, European journal of cancer.

[110]  S. Dimmeler,et al.  MicroRNAs in myocardial infarction , 2015, Nature Reviews Cardiology.

[111]  B. Cullen,et al.  The imprinted H19 noncoding RNA is a primary microRNA precursor. , 2007, RNA.

[112]  Ming Sun,et al.  Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a , 2014, Oncotarget.

[113]  Kathryn A. O’Donnell,et al.  Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model , 2009, Cell.

[114]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[115]  Silvia Veneroni,et al.  miR-21: an oncomir on strike in prostate cancer , 2010, Molecular Cancer.

[116]  L. Lipovich,et al.  Activity-Dependent Human Brain Coding/Noncoding Gene Regulatory Networks , 2012, Genetics.

[117]  B. Wirth,et al.  SMN regulates axonal local translation via miR-183/mTOR pathway. , 2014, Human molecular genetics.

[118]  C. Tsao,et al.  Emerging role of microRNA-21 in cancer (Review) , 2016 .

[119]  M. Wickens,et al.  Deviants — or emissaries , 1994, Nature.

[120]  Xuhui Zhou,et al.  MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway , 2015, Tumor Biology.

[121]  W. Reik,et al.  Allelic methylation of H19 and IGF2 in the Beckwith-Wiedemann syndrome. , 1994, Human molecular genetics.

[122]  S. Dimmeler,et al.  Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth , 2014, Circulation Research.

[123]  D. Glavač,et al.  MicroRNAs miR-1, miR-133a, miR-133b and miR-208 Are Dysregulated in Human Myocardial Infarction , 2009, Cardiology.

[124]  Brian S. Clark,et al.  The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. , 2006, Genes & development.

[125]  J. Mattick,et al.  The relationship between non-protein-coding DNA and eukaryotic complexity. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[126]  Jianjun Ma,et al.  MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson’s disease by targeting Nlrp3 , 2017, Human Cell.

[127]  Michael Thomas,et al.  MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer , 2003, Oncogene.

[128]  Owen M. Rennert,et al.  Identification of Differentially Expressed MicroRNAs Across the Developing Human Brain , 2013, Molecular Psychiatry.

[129]  E. Kimura,et al.  Insights into Regulation of the miR-17-92 Cluster of miRNAs in Cancer , 2015, Front. Med..

[130]  Sek Won Kong,et al.  Altered microRNA expression in human heart disease. , 2007, Physiological genomics.

[131]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[132]  M. Satoh,et al.  Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. , 2010, Journal of cardiac failure.

[133]  J. Cai,et al.  HOTAIR: a cancer-related long non-coding RNA. , 2014, Neoplasma.

[134]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[135]  Dimitrios Iliopoulos,et al.  Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms , 2011, Cell.

[136]  Chaochun Liu,et al.  The imprinted H19 lncRNA antagonizes let-7 microRNAs. , 2013, Molecular cell.

[137]  M. Gorospe,et al.  Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB , 2013, PLoS genetics.

[138]  A. Schambach,et al.  Long noncoding RNA Chast promotes cardiac remodeling , 2016, Science Translational Medicine.

[139]  Wen Li,et al.  Clinical significance of miR-221 and its inverse correlation with p27Kip1 in hepatocellular carcinoma , 2011, Molecular Biology Reports.

[140]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[141]  J. Simpkins,et al.  Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity , 2016, Brain Research.

[142]  A. J. Slater,et al.  Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. , 2016, American journal of human genetics.

[143]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[144]  Jian-Fu Chen,et al.  MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. , 2009, The Journal of clinical investigation.

[145]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[146]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007 .

[147]  Sarah Geisler,et al.  RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts , 2013, Nature Reviews Molecular Cell Biology.

[148]  E. Finch,et al.  MicroRNA-Mediated In Vitro and In Vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes , 2012, Circulation research.

[149]  X. Sheng,et al.  The Long Noncoding RNA MALAT-1 Is Highly Expressed in Ovarian Cancer and Induces Cell Growth and Migration , 2016, PloS one.

[150]  Yu-Fan Chang,et al.  miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. , 2013, American journal of human genetics.

[151]  Ayellet V. Segrè,et al.  The Lin28/let-7 Axis Regulates Glucose Metabolism , 2011, Cell.

[152]  I. Karakikes,et al.  Therapeutic Cardiac‐Targeted Delivery of miR‐1 Reverses Pressure Overload–Induced Cardiac Hypertrophy and Attenuates Pathological Remodeling , 2013, Journal of the American Heart Association.

[153]  C. Croce,et al.  MicroRNA genes are frequently located near mouse cancer susceptibility loci , 2007, Proceedings of the National Academy of Sciences.

[154]  J. Cheng,et al.  MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma , 2010, Molecular Cancer.

[155]  G. Wang,et al.  Long Noncoding RNA MALAT1 Promotes Aggressive Pancreatic Cancer Proliferation and Metastasis via the Stimulation of Autophagy , 2016, Molecular Cancer Therapeutics.

[156]  Chunxiang Zhang,et al.  MicroRNA-21 in Cardiovascular Disease , 2010, Journal of cardiovascular translational research.

[157]  Michael T. McManus,et al.  Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs , 2013, PLoS genetics.

[158]  Ilona B. Bruinsma,et al.  MicroRNA-29a Is a Candidate Biomarker for Alzheimer’s Disease in Cell-Free Cerebrospinal Fluid , 2015, Molecular Neurobiology.

[159]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[160]  Qiangfeng Cliff Zhang,et al.  Systematic Discovery of Xist RNA Binding Proteins , 2015, Cell.

[161]  A. Hochberg,et al.  The H19 Non-Coding RNA Is Essential for Human Tumor Growth , 2007, PloS one.

[162]  L. Stanton,et al.  The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. , 2013, Molecular cell.

[163]  Jing Wang,et al.  Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes , 2008, Nature Immunology.

[164]  N. Tran,et al.  Cancer Exosomes as miRNA Factories. , 2016, Trends in cancer.

[165]  Michael Y Tolstorukov,et al.  The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. , 2014, Molecular cell.

[166]  M. Nalls,et al.  Evidence for natural antisense transcript-mediated inhibition of microRNA function , 2010, Genome Biology.

[167]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[168]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[169]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[170]  H. Okano,et al.  The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis , 2013, Molecular Brain.

[171]  H. Jo,et al.  Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[172]  S. Hammond,et al.  miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. , 2011, Genes & development.

[173]  E. Birney,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002, Nature.

[174]  B. Long,et al.  CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation , 2014, Nature Communications.

[175]  R. Sachidanandam,et al.  Multifaceted roles of miR-1s in repressing the fetal gene program in the heart , 2014, Cell Research.

[176]  R. Shiekhattar,et al.  Activating RNAs associate with Mediator to enhance chromatin architecture and transcription , 2013, Nature.