Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method

The aim of this paper is to analyze the various uses of Stark broadening data for non-hydrogenic lines emitted from plasma, obtained with the modified semiempirical method formulated 40 years ago (1980), which are continuously implemented in the STARK-B database. In such a way one can identify research fields where they are applied and better see the needs of users in order to better plan future work. This is done by analysis of citations of the modified semiempirical method and the corresponding data in international scientific journals, excluding cases when they are used for comparison with other experimental or theoretical Stark broadening data or for development of the theory of Stark broadening. On the basis of our analysis, one can conclude that the principal applications of such data are in astronomy (white dwarfs, A and B stars, and opacity), investigations of laser produced plasmas, laser design and optimization and their applications in industry and technology (ablation, laser melting, deposition, plasma during electrolytic oxidation, laser micro sintering), as well as for the determination of radiative properties of various plasmas, plasma diagnostics, and investigations of regularities and systematic trends of Stark broadening parameters.

[1]  V. Milosavljević,et al.  Atomic spectral line free parameter deconvolution procedure. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Puric,et al.  Stark width regularities within spectral series of the lithium isoelectronic sequence , 2018 .

[3]  A. Srećković,et al.  Stark broadening and regularities of ionized neon and argon spectral lines , 1988 .

[4]  M. Dimitrijević,et al.  Stark Broadening of Cr III Spectral Lines: DO White Dwarfs , 2018 .

[5]  T. Ryabchikova,et al.  The electron-impact broadening effect in CP stars: the case of La ii ,L aiii ,E uii, and Eu iii lines , 1999 .

[6]  F. Jin,et al.  Radiative opacity of plasmas studied by detailed term (level) accounting approaches , 2006 .

[7]  Zhe Wang,et al.  Calibration-free analysis of immersed metal alloys using long-pulse-duration laser-induced breakdown spectroscopy , 2019, Spectrochimica Acta Part B: Atomic Spectroscopy.

[8]  Forrest J. Rogers,et al.  Opacities for classical Cepheids models , 1990 .

[9]  C. C. Smith,et al.  The effect of line-broadening on the overall width of transition arrays in dense plasmas , 2006 .

[10]  Jianmin Yuan,et al.  Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  M. Jeffery,et al.  The DAVROS opacity code: Detailed term accounting calculations for LTE plasmas , 2015 .

[12]  T. Labutin,et al.  The effect of hyperfine splitting on Stark broadening for three blue-green Cu i lines in laser-induced plasma , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  C. S. Chen,et al.  Effect of ambient pressure on a femtosecond laser induced titanium plasma , 2016 .

[14]  Purić,et al.  Stark broadening and regularities of prominent multiply ionized nitrogen spectral lines. , 1987, Physical review. A, General physics.

[15]  É. Biémont,et al.  Transition probabilities and lifetimes in gold (Au I and Au II) , 2006 .

[16]  M. Dimitrijević,et al.  Stark broadening of Cd I spectral lines , 2004 .

[17]  T. Sakka,et al.  Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser , 2018 .

[18]  M. Castillejo,et al.  Temporal evolution study of the plasma induced by CO2 pulsed laser on targets of titanium oxides , 2013 .

[19]  N. B. Nessib,et al.  The STARK-B database as a resource for “STARK” widths and shifts data: State of advancement and program of development , 2013, 1311.2846.

[20]  Stefano Legnaioli,et al.  Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements , 2006 .

[21]  J. Puric,et al.  Stark widths regularities within spectral series of sodium isoelectronic sequence , 2018 .

[22]  F. Castelli,et al.  Wavelengths and oscillator strengths of Xe II from the UVES spectra of four HgMn stars , 2011, 1101.3725.

[23]  N. Badnell,et al.  A comparison of Rosseland-mean opacities from OP and OPAL , 2004, astro-ph/0404437.

[24]  R. Chaudhuri,et al.  Relativistic calculations of the lifetimes and hyperfine structure constants in 67Zn+ , 2007, 0710.1706.

[25]  Juan Kang,et al.  Application of calibration-free high repetition rate laser-ablation spark-induced breakdown spectroscopy for the quantitative elemental analysis of a silver alloy. , 2020, Applied optics.

[26]  Purić,et al.  Stark-broadening regularities of prominent multiply-ionized-oxygen spectral lines in plasma. , 1988, Physical review. A, General physics.

[27]  J. Puric,et al.  Stark Width Regularities within Beryllium Spectral Series , 2011, Publications of the Astronomical Society of Australia.

[28]  S. Jovićević,et al.  Spectroscopic diagnostics of laser-induced plasmas , 2010 .

[29]  M. Dworetsky,et al.  Xenon in mercury–manganese stars , 2008, 0801.2485.

[30]  D. Hoffmann,et al.  Density diagnostics of an argon plasma by heavy ion beams and spectroscopy , 1997 .

[31]  Jonathan Tennyson,et al.  Virtual Atomic and Molecular Data Centre , 2010 .

[32]  N. Konjević,et al.  Regularities in experimental stark shifts , 1992 .

[33]  Q. Lu,et al.  Photoionization of O III low-lying states: autoionization resonance energies and widths of some 1s-2p excited states , 2001 .

[34]  Jonathan Tennyson,et al.  The virtual atomic and molecular data centre (VAMDC) consortium , 2016 .

[35]  S. Amoruso,et al.  Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma , 2016 .

[36]  Y. Petrov,et al.  Compression zone of a magnetoplasma compressor as a source of extreme UV radiation , 2012 .

[37]  J. Barefield,et al.  Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses , 2015 .

[38]  Signal Intensity Enhancement by Cavity Confinement of Laser-Produced Plasma , 2019, IEEE Transactions on Plasma Science.

[39]  Haihong Zhu,et al.  Investigation of plasma spectra during selective laser micro sintering Cu‐based metal powder , 2013 .

[40]  Jianmin Yuan,et al.  The photoionization of Fe7+ and Fe8+ in the 2p–3d resonance energy region , 2004 .

[41]  P. Dunne,et al.  3d Photoabsorption in Zn II, Ga III and Ge IV , 1998 .

[42]  Manoj Kumar Gundawar,et al.  Optimization of temporal window for application of calibration free-laser induced breakdown spectroscopy (CF-LIBS) on copper alloys in air employing a single line , 2019, Journal of Analytical Atomic Spectrometry.

[43]  B. D. Barrett,et al.  Spectroscopic diagnostics of railgun plasma armatures , 1993 .

[44]  M. Dimitrijević,et al.  Electron-impact shifts of ion lines: modified semiempirical approach , 1986 .

[45]  A. Srećković,et al.  Experimental transition probabilities in N III, N IV and N V spectra , 2002 .

[46]  Kunze,et al.  Stark broadening of spectral lines along the isoelectronic sequence of Li. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[47]  Z. Dai,et al.  Measurements of radiative lifetimes, branching fractions, transition probabilities, and oscillator strengths for Eu II and Eu III levels , 2019, Monthly Notices of the Royal Astronomical Society.

[48]  B. Obradović,et al.  Stark Parameter Regularities of Multiply Charged Ion Spectral Lines Originating from the Same Transition Array , 2008 .

[49]  A. Sharma,et al.  Time-integrated optical emission studies on laser-produced copper plasma in the presence of magnetic field in air ambient at atmospheric pressure , 2017 .

[50]  Jianmin Yuan,et al.  Detailed diagnostics for a hot bromine plasma by the open M-shell opacity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  J. A. Aparicio,et al.  Stark halfwidth trends along the homologous sequence of singly ionized noble gases , 2010 .

[52]  Kenneth C. Smith Elemental abundances in normal late-B and HgMn stars from co-added IUE spectra ? , 1993 .

[53]  M. H. Miller,et al.  Electron impact broadening parameters predictions from regularities : Fe, I, Fe II, Fe III, Fe IV, C IV, and Si IV , 1993 .

[54]  S. Glenzer,et al.  Stark broadening along the berylliumlike sequence , 1998 .

[55]  F. Rezaei,et al.  Effect of self-absorption correction on LIBS measurements by calibration curve and artificial neural network , 2014 .

[56]  M. Dworetsky,et al.  Isotopic Anomalies of Platinum in the Mercury-Manganese Star HR 7775 , 1998 .

[57]  P. Teubner,et al.  Electron-impact excitation of the (5d106s)2S1/2-(5d106p)2P1/2,3/2 resonance transitions in gold atoms , 2008 .

[58]  M. Dimitrijević,et al.  ELECTRON-IMPACT STARK BROADENING PARAMETERS FOR Ti II AND Ti III SPECTRAL LINES , 2001 .

[59]  E. Fill,et al.  Linewidth calculations of Si11+ and Mg9+ resonance lines and application to photoresonant x‐ray laser pumping , 1994 .

[60]  M. Dimitrijević,et al.  On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach , 2014 .

[61]  Kunze,et al.  Investigation of a pair of transition probabilities of C III in high-density plasmas. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[62]  A. Srećković,et al.  Stark-broadening regularities of lithium-like and sodium-like isoelectronic sequences , 1988 .

[63]  Manoj Kumar Gundawar,et al.  Dependence of radiation decay constant of laser produced copper plasma on focal position , 2019, Physics of Plasmas.

[64]  S. Jovićević,et al.  Low electron density diagnostics: development of optical emission spectroscopic techniques and some applications to microwave induced plasmas , 2004 .

[65]  J. Pain,et al.  Nuclear excitation by electron transition rate confidence interval in a $^{201}$Hg local thermodynamic equilibrium plasma , 2015 .

[66]  R. Philip,et al.  Ultrafast laser produced zinc plasma: Stark broadening of emission lines in nitrogen ambient , 2016 .

[67]  A. Sharma,et al.  Melt ejection from copper target in air in the presence of magnetic field using nanosecond pulsed laser ablation , 2017 .

[68]  N. Konjević On the use of non-hydrogenic spectral line profiles for plasma electron density diagnostics , 2001 .

[69]  M. Dimitrijević,et al.  Quantum Stark broadening data for the C iv, N v, O vi, F vii and Ne viii resonance doublets , 2011 .

[70]  A. Irimia Forbidden transition probabilities of astrophysical interest among low-lying states of V III , 2007 .

[71]  D. K. Nandy,et al.  Relativistic calculations of radiative properties and fine structure constant varying sensitivity coefficients in the astrophysically relevant Zn ii, Si iv and Ti iv ions , 2015 .

[72]  M. Seaton Radiative accelerations in stellar envelopes , 1997 .

[73]  M. Dimitrijević,et al.  Stark Broadening Parameters for Spectral Lines of Singly-, Doubly- and Triply-Charged Vanadium Ions , 2000 .

[74]  Y. Inada,et al.  Initiation Process of Vacuum Breakdown Between Cu and CuCr Electrodes , 2019, IEEE Transactions on Plasma Science.

[75]  F. Rogers,et al.  Radiative atomic Rosseland mean opacity tables , 1992 .

[76]  S. Vennes,et al.  Improved Calculations of the Equilibrium Abundances of Heavy Elements Supported by Radiative Levitation in the Atmospheres of Hot DA White Dwarfs , 1995 .

[77]  Sarah E. Harris,et al.  Femtosecond-pulse-driven 10-Hz 41.8-nm laser in Xe ix , 1996 .

[78]  R. K. Thareja,et al.  Heterogeneous (Cu-Ti) colliding plasma dynamics , 2016 .

[79]  Y. Shin,et al.  Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation , 2015 .

[80]  J. A. Aparicio,et al.  Irregularities of Stark parameters of Xe II spectral lines , 2009 .

[81]  N. Konjević,et al.  Spectroscopic characterization of plasma during electrolytic oxidation (PEO) of aluminium , 2011 .

[82]  É. Biémont,et al.  Radiative lifetime and transition probabilities in CdI and CdII , 2004 .

[83]  H. Griem SEMIEMPIRICAL FORMULAS FOR THE ELECTRON-IMPACT WIDTHS AND SHIFTS OF ISOLATED ION LINES IN PLASMAS. , 1968 .

[84]  A. Bultel,et al.  Experimental Study of a Double Arc Nitrogen Plasma: Static and Dynamic Behavior , 2007, IEEE Transactions on Plasma Science.

[85]  C. Ahamer,et al.  Femtosecond double pulse laser-induced breakdown spectroscopy: Investigation of the intensity enhancement , 2018, Spectrochimica Acta Part B: Atomic Spectroscopy.

[86]  M. Dimitrijević,et al.  On the Variation of Stark Line Shifts within a given Spectrum in the Case of Irregular Energy Level Structure , 2000 .

[87]  A. Feigel,et al.  SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD , 2016, 1601.01930.

[88]  P. Dunne,et al.  LETTER TO THE EDITOR: 3d photoabsorption in Zn III and Ge V , 1998 .

[89]  A. Alonso-Medina,et al.  Stark width and shift parameter predictions and regularities of Sn II , 2006 .

[90]  A. Khare,et al.  Effect of uniform magnetic field on laser-produced Cu plasma and the deposited particles on the target surface , 2017 .

[91]  D. G. Hummer,et al.  Quantitative Spectroscopy of Hot Stars , 1990 .

[92]  M. Dimitrijević,et al.  The electron impact broadening parameters in hot star atmospheres: Mn II, Mn III, Ga III, Ge III and Ge IV lines , 1998 .

[93]  R. Lee,et al.  Rapid generation of approximate optical spectra of dense cool plasmas , 1997 .

[94]  V. Gurovich,et al.  Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array , 2015 .

[95]  M. Dimitrijević,et al.  Stark widths of doubly- and triply-ionized atom lines☆ , 1980 .

[96]  S. Harris,et al.  Femtosecond-pulse-driven, electron-excited XUV lasers in eight-times-ionized noble gases. , 1994, Optics letters.

[97]  M. Castillejo,et al.  Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis , 2011 .

[98]  F. Rogers,et al.  Opacity of Stellar Matter , 1998 .

[99]  S. Sahal-Bréchot,et al.  Checking the dependence on the upper level ionization potential of electron impact widths using quantum calculations , 2011 .

[100]  A. Srećković,et al.  Stark Broadening Regularities within Successive Ionization Stages in Krypton and Xenon , 1991 .

[101]  Y. Shin,et al.  Characteristics of plume plasma and its effects on ablation depth during ultrashort laser ablation of copper in air , 2012 .

[102]  Yann Cressault,et al.  Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure , 2013 .

[103]  A. Alonso-Medina,et al.  Stark broadening parameters predictions and regularities of singly ionized lead , 2002 .

[104]  M. A. Baig,et al.  Comparison of zinc and cadmium plasma parameters produced by laser-ablation , 2007 .

[105]  J. Campos,et al.  Experimental oscillator strengths of Zn II lines of astrophysical interest , 2006 .

[106]  C. Gao,et al.  Autoionization widths of open-M-shell germanium ions: effects on inner-shell absorptions , 2012 .

[107]  C. Gao,et al.  Detailed Theoretical Investigations on the L-Shell Absorption of Open-M-Shell Germanium Plasmas: Effect of Autoionization Resonance Broadening , 2012 .

[108]  E. Pfender,et al.  Line-by-line method of calculating emission coefficients for thermal plasmas consisting of monatomic species , 1996 .

[109]  L. Beji,et al.  Net emission coefficient of complex thermal plasmas used in SWNT synthesis , 2018, Journal of Physics D: Applied Physics.

[110]  E. Pfender,et al.  Theoretical radiative emission results for argon/copper thermal plasmas , 1995 .

[111]  J. Winefordner,et al.  Experimental verification of a radiative model of laser-induced plasma expanding into vacuum , 2005 .

[112]  K. Blagoev,et al.  Transition Probabilities of Some High Lying States of Cd II , 2005 .

[113]  J. Santos,et al.  Experimental and theoretical transition probabilities for lines arising from the 6p configurations of Au II , 2007 .

[114]  I. Jovanovic,et al.  Propagation distance-resolved characteristics of filament-induced copper plasma. , 2016, Optics express.

[115]  Jianmin Yuan,et al.  Plasma screening effects on the atomic structure and radiative opacity of dense carbon plasmas based on the DLA model , 2011 .

[116]  Jianmin Yuan,et al.  Radiative opacities of hot and solid-dense aluminium plasmas using a detailed level accounting model , 2009 .

[117]  M. Šćepanović,et al.  General Regularities of Stark Parameters for Ion Lines , 1999 .

[118]  Tsu‐Jye A. Nee Near‐resonance‐Rayleigh scattering measurement on a resonant laser‐driven barium plasma , 1985 .

[119]  M. Dimitrijević,et al.  The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles , 2015 .

[120]  Pierre Chayer,et al.  Radiative Levitation in Hot White Dwarfs: Equilibrium Theory , 1995 .

[121]  M. Taşer,et al.  Transition probabilities, oscillator strengths and radiative lifetimes for Zn II , 2013 .

[122]  J. Menart,et al.  Net emission coefficients for argon-iron thermal plasmas , 2002 .

[123]  M. Dimitrijević,et al.  Stark broadening parameters for Cu III, Zn III and Se III lines in laboratory and stellar plasma , 2006 .

[124]  Nek M. Shaikh,et al.  Diagnostics of cadmium plasma produced by laser ablation , 2006 .

[125]  J. G. Rubiano,et al.  RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature , 2008 .

[126]  R. Qindeel,et al.  Expectation Values of the Neutral Chromium Radius , 2018, Atoms.

[127]  Douglas R. Gies,et al.  Carbon, Nitrogen, and Oxygen Abundances in Early B-Type Stars , 1992 .

[128]  A. Mihajlov,et al.  The Chemi-Ionization Processes in Slow Collisions of Rydberg Atoms with Ground State Atoms: Mechanism and Applications , 2012, Journal of Cluster Science.

[129]  M. Wendt Net emission coefficients of argon iron plasmas with electron Stark widths scaled to experiments , 2011 .

[130]  Harris,et al.  Demonstration of a 10-Hz, femtosecond-pulse-driven XUV laser at 41.8 nm in Xe , 1995, Physical review letters.

[131]  M. Dimitrijević,et al.  The electron-impact broadening parameters for Co III spectral lines , 2003 .

[132]  M. Dimitrijević,et al.  Stark broadening of Xe II lines , 1996 .