Cold Snapshot of a Molecular Rotary Motor Captured by High‐Resolution Rotational Spectroscopy

Abstract We present the first high‐resolution rotational spectrum of an artificial molecular rotary motor. By combining chirped‐pulse Fourier transform microwave spectroscopy and supersonic expansions, we captured the vibronic ground‐state conformation of a second‐generation motor based on chiral, overcrowded alkenes. The rotational constants were accurately determined by fitting more than 200 rotational transitions in the 2–4 GHz frequency range. Evidence for dissociation products allowed for the unambiguous identification and characterization of the isolated motor components. Experiment and complementary quantum‐chemical calculations provide accurate geometrical parameters for the C27H20 molecular motor, the largest molecule investigated by high‐resolution microwave spectroscopy to date.

[1]  Saeed Amirjalayer,et al.  Direct Observation of a Dark State in the Photocycle of a Light-Driven Molecular Motor , 2016, The journal of physical chemistry. A.

[2]  Nathan A. Seifert,et al.  Chiral recognition and atropisomerism in the sevoflurane dimer. , 2015, Physical chemistry chemical physics : PCCP.

[3]  Chris Medcraft,et al.  Hochaufgelöste spektroskopische Untersuchungen des chiralen Metallkomplexes [CpRe(CH3)(CO)(NO)] – ein möglicher Kandidat für die Untersuchung der Paritätsverletzung , 2014 .

[4]  C. Medcraft,et al.  High-resolution spectroscopy of the chiral metal complex [CpRe(CH₃)(CO)(NO)]: a potential candidate for probing parity violation. , 2014, Angewandte Chemie.

[5]  Jamie Conyard,et al.  Chemically optimizing operational efficiency of molecular rotary motors. , 2014, Journal of the American Chemical Society.

[6]  S. Woutersen,et al.  Water lubricates hydrogen-bonded molecular machines. , 2013, Nature chemistry.

[7]  S. Grimme,et al.  Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. , 2013, Physical chemistry chemical physics : PCCP.

[8]  Jamie Conyard,et al.  Ultrafast dynamics in the power stroke of a molecular rotary motor. , 2012, Nature chemistry.

[9]  David A. Leigh,et al.  Operation Mechanism of a Molecular Machine Revealed Using Time-Resolved Vibrational Spectroscopy , 2010, Science.

[10]  M. Prato,et al.  Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines. , 2009, Accounts of chemical research.

[11]  Gordon G. Brown,et al.  A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. , 2008, The Review of scientific instruments.

[12]  P. Theulé,et al.  Rotational Spectra of Small PAHs: Acenaphthene, Acenaphthylene, Azulene, and Fluorene , 2007 .

[13]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[14]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[15]  B. Feringa,et al.  Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification. , 2005, Chemical communications.

[16]  M. Guest,et al.  The rotational spectrum and theoretical study of a dinuclear complex, MnRe(CO)(10). , 2004, The Journal of chemical physics.

[17]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .