Lindstrom theorems for fragments of first-order logic

Lindstrom theorems characterize logics in terms of model-theoretic conditions such as Compactness and the Lowenheim-Skolem property. Most existing Lindstrom theorems concern extensions of first-order logic. On the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstrom theorems for these languages can be challenging, as most known techniques rely on coding arguments that seem to require the full expressive power of first-order logic. In this paper, we provide Lindstrom characterizations for a number of fragments of first-order logic. These include the k-variable fragments for k > 2, Tarski's relation algebra, graded modal logic, and the binary guarded fragment. We use two different proof techniques. One is a modification of the original Lindstrom proof. The other involves the modal concepts of bisimulation, tree unraveling, and finite depth. Our results also imply semantic preservation theorems. Characterizing the 2-variable fragment or the full guarded fragment remain open problems.

[1]  G. Fuhrken,et al.  Skolem-type normal forms for first-order languages with a generalized quantifier , 1964 .

[2]  Johan van Benthem,et al.  A New Modal Lindström Theorem , 2007, Logica Universalis.

[3]  M. de Rijke,et al.  A Lindström theorem for modal logic , 1994 .

[4]  Phokion G. Kolaitis,et al.  Generalized quantifiers and pebble games on finite structures , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[5]  Jouko Väänänen,et al.  Abstract model theory as a framework for universal logic , 2005 .

[6]  Robert Piro,et al.  A Lindström characterisation of the guarded fragment and of modal logic with a global modality , 2008, Advances in Modal Logic.

[7]  Johan van Benthem Guards, Bounds, and Generalized Semantics , 2005, J. Log. Lang. Inf..

[8]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[9]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[10]  Balder ten Cate Interpolation for extended modal languages , 2005, J. Symb. Log..

[11]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[12]  M. Ziegler,et al.  A language for topological structures which satisfies a Lindström-theorem , 1976 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Leslie H. Tharp Which logic is the right logic? , 2004, Synthese.

[15]  Rasmus Ejlers Møgelberg,et al.  Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science , 2007 .

[16]  Jouko Väänänen,et al.  Abstract Logic and Set Theory. I. Definability , 1979 .

[17]  Kan Ching Ng,et al.  Relation algebras with transitive closure , 1984 .

[18]  Johan van Benthem,et al.  Interpolation, preservation, and pebble games , 1999, Journal of Symbolic Logic.

[19]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[20]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[21]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[22]  K. J. Barwise,et al.  Absolute logics and L∞ω☆ , 1972 .

[23]  Per Lindström,et al.  On Extensions of Elementary Logic , 2008 .

[24]  I. A. Stewart Review: Phokion G. Kolaitis, Jouko A. Vaananen, Generalized Quantifiers and Pebble Games on Finite Structures , 1996 .

[25]  K. J. Barwise,et al.  Axioms for abstract model theory , 1974 .

[26]  Y. Venema Relational Games , 2003 .

[27]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..