CONSTRAINING NEUTRINO COOLING USING THE HOT WHITE DWARF LUMINOSITY FUNCTION IN THE GLOBULAR CLUSTER 47 TUCANAE
暂无分享,去创建一个
Harvey Richer | Jason Kalirai | Jeremy Heyl | H. Richer | J. Heyl | B. Hansen | J. Kalirai | Bradley Hansen | Ryan Goldsbury | Shane Frewen | R. Goldsbury | S. Frewen
[1] V. Castellani,et al. Stellar evolution as a probe of neutrino properties , 1993 .
[2] S. O. Physics,et al. The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.
[3] Masayuki Nakagawa,et al. Axion Bremsstrahlung in Dense Stars , 1987 .
[4] S. O. Kepler,et al. WHITE DWARF LUMINOSITY AND MASS FUNCTIONS FROM SLOAN DIGITAL SKY SURVEY SPECTRA , 2007, 0709.2190.
[5] S. Blinnikov,et al. The cooling of hot white dwarfs: a theory with non-standard weak interactions, and a comparison with observations , 1994 .
[6] A. S. Fruchter,et al. Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .
[7] S. Cassisi,et al. The White Dwarf Cooling Sequence of NGC 6397 , 2005 .
[8] I. Reid,et al. ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M ≲ 1 M☉ , 2012, 1212.1159.
[9] M. Catelán,et al. The Helium-Core Mass at the Helium Flash in Low-Mass Red Giant Stars: Observations and Theory , 1995, astro-ph/9509062.
[10] Jin Wang. Constraints of the neutrino magnetic moment from white dwarf cooling , 1992 .
[11] S. Kawaler,et al. A Strong Test of Electroweak Theory Using Pulsating DB White Dwarf Stars as Plasmon Neutrino Detectors , 2003, astro-ph/0312303.
[12] James Liebert,et al. A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4 , 2006, astro-ph/0606700.
[13] Spectral types and masses of white dwarfs in globular clusters , 2004, astro-ph/0403245.
[14] G. S. Burley,et al. THE CLUSTER AGES EXPERIMENT (CASE). IV. ANALYSIS OF THE ECLIPSING BINARY V69 IN THE GLOBULAR CLUSTER 47 Tuc , 2009, 0910.4262.
[15] J. Isern,et al. Axions and the Cooling of White Dwarf Stars , 2008, 0806.2807.
[16] M. Catelán,et al. THE MASSES OF POPULATION II WHITE DWARFS , 2009, 0909.2253.
[17] D. Lamb,et al. Evolution of crystallizing pure $sup 12$C white dwarfs , 1975 .
[18] Frank Timmes,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.
[19] J. Anderson,et al. An age difference of two billion years between a metal-rich and a metal-poor globular cluster , 2013, Nature.
[20] J. Krzesinski,et al. A hot white dwarf luminosity function from the Sloan Digital Sky Survey , 2009 .
[21] A. Dotter,et al. AN EMPIRICAL MEASURE OF THE RATE OF WHITE DWARF COOLING IN 47 TUCANAE , 2012, 1209.4901.
[22] M. Shimojo,et al. A STATISTICAL STUDY OF CORONAL ACTIVE EVENTS IN THE NORTH POLAR REGION , 2013 .
[23] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[24] L. Althaus,et al. QUIESCENT NUCLEAR BURNING IN LOW-METALLICITY WHITE DWARFS , 2013, 1308.2062.
[25] F. Hoyle,et al. Neutrino processes and pair formation in massive stars and supernovae. , 1964 .
[26] H. Richer,et al. QUANTIFYING MASS SEGREGATION AND NEW CORE RADII FOR 54 MILKY WAY GLOBULAR CLUSTERS , 2013, 1308.3706.
[27] S. O. Kepler,et al. The rate of cooling of the pulsating white dwarf star G117−B15A: a new asteroseismological inference of the axion mass , 2012, 1205.6180.
[28] Hubble Space Telescope Proper Motions and Stellar Dynamics in the Core of the Globular Cluster 47 Tucanae , 2006, astro-ph/0607597.
[29] M. M. Bertolami. Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs , 2014, 1407.1404.
[30] J. Krzesinski,et al. A population synthesis study of the luminosity function of hot white dwarfs , 2014, 1402.2104.
[31] B. Hansen,et al. Cooling Models for Old White Dwarfs , 1999, astro-ph/9903025.
[32] H. Richer,et al. A MEASUREMENT OF DIFFUSION IN 47 TUCANAE , 2015, 1502.01890.
[33] P. Bergeron,et al. AN IMPROVED SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 4 , 2011, 1102.0056.
[34] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[35] A. Weiss,et al. Standard and Nonstandard Plasma Neutrino Emission Revisited , 1994 .
[36] Peter B. Stetson,et al. THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .
[37] N. Hambly,et al. The SuperCOSMOS Sky Survey . Paper I : Introduction and Description , 2001 .
[38] A. Dotter,et al. A DEEP, WIDE-FIELD, AND PANCHROMATIC VIEW OF 47 Tuc AND THE SMC WITH HST: OBSERVATIONS AND DATA ANALYSIS METHODS , 2011, 1112.1426.
[39] The White Dwarf Cooling Sequence of NGC6397 , 2007, astro-ph/0701738.
[40] J. Anderson,et al. THE SPECTRAL ENERGY DISTRIBUTIONS OF WHITE DWARFS IN 47 Tucanae: THE DISTANCE TO THE CLUSTER , 2011, 1112.1425.
[41] G. Raffelt. Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties , 1990 .
[42] S. Vila. Pre-white dwarf evolution, 3 , 1966 .
[43] M. Giannotti,et al. THE IMPACT OF NEUTRINO MAGNETIC MOMENTS ON THE EVOLUTION OF MASSIVE STARS , 2008, 0809.4703.
[44] L. Althaus,et al. Revisiting the axion bounds from the Galactic white dwarf luminosity function , 2014, 1406.7712.
[45] J. Liebert,et al. The Luminosity Function of DA White Dwarfs , 1986 .
[46] H. Hayashi,et al. Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes , 1996 .
[47] M. Catelán,et al. Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.