CONSTRAINING NEUTRINO COOLING USING THE HOT WHITE DWARF LUMINOSITY FUNCTION IN THE GLOBULAR CLUSTER 47 TUCANAE

We present Hubble Space Telescope observations of the upper part ( K) of the white dwarf cooling sequence in the globular cluster 47 Tucanae and measure a luminosity function of hot white dwarfs. Comparison with previous determinations from large-scale field surveys indicates that the previously determined plateau at high effective temperatures is likely a selection effect, as no such feature is seen in this sample. Comparison with theoretical models suggests that the current estimates of white dwarf neutrino emission (primarily by the plasmon channel) are accurate, and variations are restricted to no more than a factor of two globally, at 95% confidence. We use these constraints to place limits on various proposed exotic emission mechanisms, including a nonzero neutrino magnetic moment, formation of axions, and emission of Kaluza–Klein modes into extra dimensions.

[1]  V. Castellani,et al.  Stellar evolution as a probe of neutrino properties , 1993 .

[2]  S. O. Physics,et al.  The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.

[3]  Masayuki Nakagawa,et al.  Axion Bremsstrahlung in Dense Stars , 1987 .

[4]  S. O. Kepler,et al.  WHITE DWARF LUMINOSITY AND MASS FUNCTIONS FROM SLOAN DIGITAL SKY SURVEY SPECTRA , 2007, 0709.2190.

[5]  S. Blinnikov,et al.  The cooling of hot white dwarfs: a theory with non-standard weak interactions, and a comparison with observations , 1994 .

[6]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[7]  S. Cassisi,et al.  The White Dwarf Cooling Sequence of NGC 6397 , 2005 .

[8]  I. Reid,et al.  ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M ≲ 1 M☉ , 2012, 1212.1159.

[9]  M. Catelán,et al.  The Helium-Core Mass at the Helium Flash in Low-Mass Red Giant Stars: Observations and Theory , 1995, astro-ph/9509062.

[10]  Jin Wang Constraints of the neutrino magnetic moment from white dwarf cooling , 1992 .

[11]  S. Kawaler,et al.  A Strong Test of Electroweak Theory Using Pulsating DB White Dwarf Stars as Plasmon Neutrino Detectors , 2003, astro-ph/0312303.

[12]  James Liebert,et al.  A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4 , 2006, astro-ph/0606700.

[13]  Spectral types and masses of white dwarfs in globular clusters , 2004, astro-ph/0403245.

[14]  G. S. Burley,et al.  THE CLUSTER AGES EXPERIMENT (CASE). IV. ANALYSIS OF THE ECLIPSING BINARY V69 IN THE GLOBULAR CLUSTER 47 Tuc , 2009, 0910.4262.

[15]  J. Isern,et al.  Axions and the Cooling of White Dwarf Stars , 2008, 0806.2807.

[16]  M. Catelán,et al.  THE MASSES OF POPULATION II WHITE DWARFS , 2009, 0909.2253.

[17]  D. Lamb,et al.  Evolution of crystallizing pure $sup 12$C white dwarfs , 1975 .

[18]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[19]  J. Anderson,et al.  An age difference of two billion years between a metal-rich and a metal-poor globular cluster , 2013, Nature.

[20]  J. Krzesinski,et al.  A hot white dwarf luminosity function from the Sloan Digital Sky Survey , 2009 .

[21]  A. Dotter,et al.  AN EMPIRICAL MEASURE OF THE RATE OF WHITE DWARF COOLING IN 47 TUCANAE , 2012, 1209.4901.

[22]  M. Shimojo,et al.  A STATISTICAL STUDY OF CORONAL ACTIVE EVENTS IN THE NORTH POLAR REGION , 2013 .

[23]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[24]  L. Althaus,et al.  QUIESCENT NUCLEAR BURNING IN LOW-METALLICITY WHITE DWARFS , 2013, 1308.2062.

[25]  F. Hoyle,et al.  Neutrino processes and pair formation in massive stars and supernovae. , 1964 .

[26]  H. Richer,et al.  QUANTIFYING MASS SEGREGATION AND NEW CORE RADII FOR 54 MILKY WAY GLOBULAR CLUSTERS , 2013, 1308.3706.

[27]  S. O. Kepler,et al.  The rate of cooling of the pulsating white dwarf star G117−B15A: a new asteroseismological inference of the axion mass , 2012, 1205.6180.

[28]  Hubble Space Telescope Proper Motions and Stellar Dynamics in the Core of the Globular Cluster 47 Tucanae , 2006, astro-ph/0607597.

[29]  M. M. Bertolami Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs , 2014, 1407.1404.

[30]  J. Krzesinski,et al.  A population synthesis study of the luminosity function of hot white dwarfs , 2014, 1402.2104.

[31]  B. Hansen,et al.  Cooling Models for Old White Dwarfs , 1999, astro-ph/9903025.

[32]  H. Richer,et al.  A MEASUREMENT OF DIFFUSION IN 47 TUCANAE , 2015, 1502.01890.

[33]  P. Bergeron,et al.  AN IMPROVED SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 4 , 2011, 1102.0056.

[34]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[35]  A. Weiss,et al.  Standard and Nonstandard Plasma Neutrino Emission Revisited , 1994 .

[36]  Peter B. Stetson,et al.  THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .

[37]  N. Hambly,et al.  The SuperCOSMOS Sky Survey . Paper I : Introduction and Description , 2001 .

[38]  A. Dotter,et al.  A DEEP, WIDE-FIELD, AND PANCHROMATIC VIEW OF 47 Tuc AND THE SMC WITH HST: OBSERVATIONS AND DATA ANALYSIS METHODS , 2011, 1112.1426.

[39]  The White Dwarf Cooling Sequence of NGC6397 , 2007, astro-ph/0701738.

[40]  J. Anderson,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF WHITE DWARFS IN 47 Tucanae: THE DISTANCE TO THE CLUSTER , 2011, 1112.1425.

[41]  G. Raffelt Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties , 1990 .

[42]  S. Vila Pre-white dwarf evolution, 3 , 1966 .

[43]  M. Giannotti,et al.  THE IMPACT OF NEUTRINO MAGNETIC MOMENTS ON THE EVOLUTION OF MASSIVE STARS , 2008, 0809.4703.

[44]  L. Althaus,et al.  Revisiting the axion bounds from the Galactic white dwarf luminosity function , 2014, 1406.7712.

[45]  J. Liebert,et al.  The Luminosity Function of DA White Dwarfs , 1986 .

[46]  H. Hayashi,et al.  Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes , 1996 .

[47]  M. Catelán,et al.  Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.