Computation in Finitary Stochastic and Quantum Processes

Abstract We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process’ behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated-beam-splitter, an atom in a magnetic field, and atoms in an ion trap—a special case of which implements the Deutsch quantum algorithm. We show that these systems’ behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  James P. Crutchfield,et al.  Intrinsic Quantum Computation , 2008 .

[3]  Francisco Casacuberta,et al.  Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[5]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[6]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[7]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Auerbach,et al.  Grammatical complexity of strange sets. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[9]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[10]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[11]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[12]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[13]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[14]  Rusins Freivalds,et al.  Quantum Finite State Transducers , 2001, SOFSEM.

[15]  Kurt Jacobs,et al.  Emergence of chaos in quantum systems far from the classical limit. , 2006, Physical review letters.

[16]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[18]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[19]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[20]  P. Caines Linear Stochastic Systems , 1988 .

[21]  L A Coldren,et al.  Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot , 2006, Science.

[22]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[23]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[24]  Naftali Tishby,et al.  Predictability, Complexity, and Learning , 2000, Neural Computation.

[25]  Andrew Fraser Chaotic Data and Model Building , 1991 .

[26]  Yi Wang,et al.  Grammatical complexity of unimodal maps with eventually periodic kneading sequences , 1994 .

[27]  James P. Crutchfield,et al.  Language Diversity of Measured Quantum Processes , 2008, Int. J. Unconv. Comput..

[28]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[29]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[30]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[31]  J. Crutchfield,et al.  Statistical complexity of simple one-dimensional spin systems , 1997, cond-mat/9702191.

[32]  Stanley Gudder,et al.  Quantum Automata: An Overview , 1999 .

[33]  Simone Severini On the Digraph of a Unitary Matrix , 2003, SIAM J. Matrix Anal. Appl..

[34]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[35]  Paul M. B. Vitányi,et al.  Meaningful Information , 2001, IEEE Transactions on Information Theory.

[36]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[37]  Burkhard Kümmerer,et al.  Quantum Markov Processes , 2002 .

[38]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[39]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[40]  Asher Peres,et al.  On quantum-mechanical automata , 1984 .

[41]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[42]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[43]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[44]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[45]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[46]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[47]  James P. Crutchfield,et al.  Computation at the Onset of Chaos , 1991 .

[48]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[49]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[50]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[51]  James P. Crutchfield,et al.  Computation in Sofic Quantum Dynamical Systems , 2007, Natural Computing.

[52]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[53]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[54]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[55]  C. Pillet Quantum Dynamical Systems , 2006 .

[56]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[57]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[58]  Richard A. Stein,et al.  Molecular Imaging: FRET Microscopy and Spectroscopy, A. Periasamy, R.N. Day (Eds.). Oxford University Press Inc. (2005), Price GB £58.00, ISBN: 0-19-517720-6 , 2006 .

[59]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[60]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..