Obstacle Avoidance for the Segway Robotic Mobility Platform

This paper presents an obstacle avoidance system for the Segway Robotic Mobility Platform (RMP). The system consists of four main modules: terrain mapping, terrain traversability analysis, path planning, and motion control. The main sensor in our system is a forward/downward-looking 2-D Sick laser rangefinder. The terrain mapping module registers realtime laser range data into a grid-type elevation map. The traversal property of the elevation map is then analyzed by the traversability analysis module, which transforms the elevation map into a traversability map.The paper introduces a new concept called “traversability field histogram,” which is used to transform the traversability map into a one-dimensional polar histogram. Finally, the path planning module determines the steering and velocity commands and sends them to the motion control module.

[1]  Cang Ye,et al.  A new terrain mapping method for mobile robots obstacle negotiation , 2003, SPIE Defense + Commercial Sensing.

[2]  C. M. Shoemaker,et al.  The Demo III UGV program: a testbed for autonomous navigation research , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[3]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains: Functions and Integration , 2002, Int. J. Robotics Res..

[4]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[5]  Cang Ye,et al.  A novel filter for terrain mapping with laser rangefinders , 2004, IEEE Transactions on Robotics.

[6]  Danwei Wang,et al.  A Novel Navigation Method for Autonomous Mobile Vehicles , 2001, J. Intell. Robotic Syst..

[7]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[8]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  William Whittaker,et al.  Technology and Field Demonstration of Robotic Search for Antarctic Meteorites , 2000, Int. J. Robotics Res..

[10]  William Whittaker,et al.  Experience with rover navigation for lunar-like terrains , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[11]  Simon Lacroix,et al.  Reactive navigation in outdoor environments using potential fields , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[12]  Martial Hebert,et al.  A behavior-based system for off-road navigation , 1994, IEEE Trans. Robotics Autom..

[13]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[14]  Johann Borenstein,et al.  FLEXnav: a fuzzy logic expert dead-reckoning system for the Segway RMP , 2004, SPIE Defense + Commercial Sensing.

[15]  Donald B. Gennery,et al.  Traversability Analysis and Path Planning for a Planetary Rover , 1999, Auton. Robots.

[16]  Regis Hoffman,et al.  Terrain mapping for a walking planetary rover , 1994, IEEE Trans. Robotics Autom..

[17]  Patrick Hébert,et al.  Uncertain map making in natural environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[18]  Takeo Kanade,et al.  High resolution terrain map from multiple sensor data , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.