A note on the monotonicity formula of Caffarelli–Jerison–Kenig

The aim of this note is to prove the monotonicity formula of Caarelli-Jerison -Kenig for functions, which are not necessarily continuous. We also give a detailed proof of the multiphase version of the monotonicity formula in any dimension.

[1]  Shmuel Friedland,et al.  Eigenvalue inequalities for the dirichlet problem on spheres and the growth of subharmonic functions , 1976 .

[2]  Dorin Bucur,et al.  Multiphase Shape Optimization Problems , 2013, SIAM J. Control. Optim..

[3]  Michel Pierre,et al.  Lipschitz continuity of state functions in some optimal shaping , 2005 .

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  Susanna Terracini,et al.  On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae , 2003 .

[6]  L. Caffarelli,et al.  A Geometric Approach to Free Boundary Problems , 2005 .

[7]  Susanna Terracini,et al.  A variational problem for the spatial segregation of reaction-diffusion systems , 2003 .

[8]  Susanna Terracini,et al.  An optimal partition problem related to nonlinear eigenvalues , 2003 .

[9]  L. Caffarelli,et al.  Existence and regularity for a minimum problem with free boundary. , 1981 .

[10]  David Jerison,et al.  Some new monotonicity theorems with applications to free boundary problems , 2002 .

[11]  L. A. Cafferelli,et al.  An Optimal Partition Problem for Eigenvalues , 2007, J. Sci. Comput..

[12]  B. Helffer,et al.  Nodal Domains and Spectral Minimal Partitions , 2006, math/0610975.

[13]  Avner Friedman,et al.  Variational problems with two phases and their free boundaries , 1984 .

[14]  Bozhidar Velichkov,et al.  A Multiphase Shape Optimization Problem for Eigenvalues: Qualitative Study and Numerical Results , 2016, SIAM J. Numer. Anal..