Feedback Control of Spatially Evolving Flows

In this thesis we apply linear feedback control to spatially evolving flows in order to minimize disturbance growth. The dynamics is assumed to be described by the linearized Navier--Stokes equatio ...

[1]  Dan S. Henningson,et al.  The Fringe Region Technique and the Fourier Method Used in the Direct Numerical Simulation of Spatially Evolving Viscous Flows , 1999, SIAM J. Sci. Comput..

[2]  J. Chomaz,et al.  GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS: Non-Normality and Nonlinearity , 2005 .

[3]  M. Landahl A note on an algebraic instability of inviscid parallel shear flows , 1980, Journal of Fluid Mechanics.

[4]  C. Cossu,et al.  Global Measures of Local Convective Instabilities , 1997 .

[5]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[6]  H. Fernholz Boundary Layer Theory , 2001 .

[7]  Thomas Kailath,et al.  Linear Systems , 1980 .

[8]  P. Spalart,et al.  Linear and nonlinear stability of the Blasius boundary layer , 1992, Journal of Fluid Mechanics.

[9]  J. Ortega,et al.  Computation of selected eigenvalues of generalized eigenvalue problems , 1993 .

[10]  Markus J. Kloker,et al.  A Robust High-Resolution Split-Type Compact FD Scheme for Spatial Direct Numerical Simulation of Boundary-Layer Transition , 1997 .

[11]  D. Henningson,et al.  Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes , 2007, Journal of Fluid Mechanics.

[12]  Kathryn M. Butler,et al.  Three‐dimensional optimal perturbations in viscous shear flow , 1992 .

[13]  S. C. Reddy,et al.  Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.

[14]  Dan S. Henningson,et al.  Linear feedback control and estimation of transition in plane channel flow , 2003, Journal of Fluid Mechanics.

[15]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[16]  Thomas B. Gatski,et al.  The temporally filtered Navier–Stokes equations: Properties of the residual stress , 2003 .

[17]  O. Marxen,et al.  Steady solutions of the Navier-Stokes equations by selective frequency damping , 2006 .

[18]  T. Bewley,et al.  State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows , 2005, Journal of Fluid Mechanics.

[19]  Uwe Ehrenstein,et al.  On the onset of nonlinear oscillations in a separating boundary-layer flow , 2003, Journal of Fluid Mechanics.

[20]  D. Henningson,et al.  Optimal disturbances and bypass transition in boundary layers , 1999 .

[21]  T. Herbert PARABOLIZED STABILITY EQUATIONS , 1994 .

[22]  N. So On the breakdown of boundary layer streaks , 2022 .

[23]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[24]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[25]  T. Ellingsen,et al.  Stability of linear flow , 1975 .

[26]  John Kim,et al.  Control of turbulent boundary layers , 2003 .

[27]  Dan S. Henningson,et al.  Secondary instability of cross-flow vortices in Falkner–Skan–Cooke boundary layers , 1998, Journal of Fluid Mechanics.

[28]  Dan S. Henningson,et al.  An efficient spectral integration method for the solution of the Navier-Stokes equations , 1992 .

[29]  Dan S. Henningson,et al.  Linear optimal control applied to instabilities in spatially developing boundary layers , 2002, Journal of Fluid Mechanics.

[30]  J. C. Cooke,et al.  The boundary layer of a class of infinite yawed cylinders , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Dan S. Henningson,et al.  State estimation in wall-bounded flow systems. Part 2. Turbulent flows , 2006, Journal of Fluid Mechanics.

[32]  F. Gallaire,et al.  On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer , 2005, Journal of Fluid Mechanics.

[33]  Mujeeb R. Malik,et al.  A spectral collocation method for the Navier-Stokes equations , 1985 .

[34]  H. Bippes,et al.  Experimental Study of Instability Modes in a Three-dimensional Boundary Layer. , 1987 .

[35]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[36]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[37]  P. Luchini Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations , 2000, Journal of Fluid Mechanics.

[38]  Leonhard Kleiser,et al.  LES of transitional flows using the approximate deconvolution model , 2004 .

[39]  Clarence W. Rowley,et al.  Dynamics and control of high-reynolds-number flow over open cavities , 2006 .

[40]  Nobuhide Kasagi,et al.  EVALUATION OF GA-BASED FEEDBACK CONTROL SYSTEM FOR DRAG REDUCTION IN WALL TURBULENCE , 2003 .

[41]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[42]  P. Schmid,et al.  On the stability of a falling liquid curtain , 2002, Journal of Fluid Mechanics.

[43]  Dan S. Henningson,et al.  Relaminarization of Reτ=100 turbulence using gain scheduling and linear state-feedback control , 2003 .

[44]  Paolo Luchini,et al.  Algebraic growth in boundary layers: optimal control by blowing and suction at the wall , 2000 .

[45]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[46]  T. Herbert Secondary Instability of Boundary Layers , 1988 .

[47]  V. Theofilis Advances in global linear instability analysis of nonparallel and three-dimensional flows , 2003 .

[48]  Ori Levin,et al.  Stability analysis and transition prediction of wall-bounded flows , 2003 .

[49]  Dan S. Henningson,et al.  An Efficient Spectral Method for Simulation of Incompressible Flow over a Flat Plate , 1999 .

[50]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .