Analytically solvable model of probabilistic network dynamics.

We present a simple model of network dynamics that can be solved analytically for fully connected networks. We obtain the dynamics of response of the system to perturbations. The analytical solution is an excellent approximation for random networks. A comparison with the scale-free network, though qualitatively similar, shows the effect of distinct topology.

[1]  G. A. Watterson Markov Chains with Absorbing States: A Genetic Example , 1961 .

[2]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[3]  Charles M. Newman,et al.  Community Food Webs , 1990 .

[4]  T. Liggett Interacting Particle Systems , 1985 .

[5]  Keith Gladstien,et al.  The Characteristic Values and Vectors for a Class of Stochastic Matrices Arising in Genetics , 1978 .

[6]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[7]  D. Zanette Critical behavior of propagation on small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[9]  S. Redner,et al.  Voter model on heterogeneous graphs. , 2004, Physical review letters.

[10]  M. A. de Menezes,et al.  Fluctuations in network dynamics. , 2004, Physical review letters.

[11]  Dan Braha,et al.  The Topology of Large-Scale Engineering Problem-Solving Networks , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[13]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Daniele Vilone,et al.  Solution of voter model dynamics on annealed small-world networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Yaneer Bar-Yam,et al.  Theory predicts the uneven distribution of genetic diversity within species , 2004, Nature.

[16]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[17]  M. Kuperman,et al.  Small world effect in an epidemiological model. , 2000, Physical review letters.

[18]  Joel E. Cohen,et al.  Community Food Webs: Data and Theory , 1990 .

[19]  I. Epstein,et al.  Response of complex networks to stimuli. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[21]  P. A. P. Moran,et al.  Random processes in genetics , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[23]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[24]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Hiroki Sayama,et al.  Optimization of robustness and connectivity in complex networks. , 2003, Physical review letters.

[26]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[27]  John Scott What is social network analysis , 2010 .

[28]  C Koch,et al.  Complexity and the nervous system. , 1999, Science.