Proof Methods for MHL

The final Chapter covers proof theory of hybrid logics. In contrast to the rest of the book, where ND performs a priviliged position, we have tried to present almost all deductive systems constructed so far for hybrid logics and describe their most interesting features. It follows from the author's conviction that on the field of investigation on proof methods for modal logics, the application of hybrid languages instead of standard modal languages may offer a real breakthrough, so careful analysis is vital

[1]  Patrick Blackburn,et al.  Termination for Hybrid Tableaus , 2007, J. Log. Comput..

[2]  S. Vickers Topology via Logic , 1989 .

[3]  Stéphane Demri,et al.  Cut-Free Display Calculi for Nominal Tense Logics , 1999, TABLEAUX.

[4]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[5]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .

[6]  J. Seligman The Logic of Correct Description , 1997 .

[7]  Heinrich Wansing,et al.  Proof Theory of Modal Logic , 1996 .

[8]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[9]  Patrick Blackburn,et al.  Internalizing labelled deduction , 2000, J. Log. Comput..

[10]  M. Baldoni Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension , 1998 .

[11]  Maarten Marx,et al.  Tableaux for Quantified Hybrid Logic , 2002, TABLEAUX.

[12]  Andrzej Indrzejczak,et al.  RESOLUTION BASED NATURAL DEDUCTION , 2002 .

[13]  Daniel Gorín,et al.  Ordered Resolution with Selection for H(@) , 2005, LPAR.

[14]  H. Wansing Displaying Modal Logic , 1998 .

[15]  Torben Braüner,et al.  Tableau-based Decision Procedures for Hybrid Logic , 2006 .

[16]  Marcello D'Agostino,et al.  Tableau Methods for Classical Propositional Logic , 1999 .

[17]  B. D. ten Cate,et al.  Beyond pure axioms: Node creating rules in hybrid tableaux , 2002 .

[18]  Carlos Areces,et al.  HyLoRes 1.0: Direct Resolution for Hybrid Logics , 2002, CADE.

[19]  Torben Braüner,et al.  Natural Deduction for Hybrid Logic , 2004, J. Log. Comput..

[20]  Stéphane Demri,et al.  Sequent Calculi for Nominal Tense Logics: A Step Towards Mechanization? , 1999, TABLEAUX.

[21]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[22]  Luca Viganò,et al.  Labelled Propositional Modal Logics: Theory and Practice , 1997, J. Log. Comput..

[23]  Miroslava Tzakova,et al.  Tableau Calculi for Hybrid Logics , 1999, TABLEAUX.

[24]  Jerry Seligman Internalization: The Case of Hybrid Logics , 2001, J. Log. Comput..

[25]  M. de Rijke Advances in intensional logic , 1997 .

[26]  Maarten de Rijke,et al.  Resolution in Modal, Description and Hybrid Logic , 2001, J. Log. Comput..

[27]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[28]  Carlos Areces,et al.  Hylores: A hybrid logic prover based on direct resolution (system demo) , 2002 .