Nonlinear internal wave penetration via parametric subharmonic instability

We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially periodic boundary forcing from above of a density stratification comprising a strongly stratified, thin upper layer sitting atop a weakly stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly stratified lower layer. We find that around 10% of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.

[1]  T. Akylas,et al.  Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains , 2014, Journal of Fluid Mechanics.

[2]  T. Dauxois,et al.  Finite-size effects in parametric subharmonic instability , 2014, Journal of Fluid Mechanics.

[3]  P. Diamessis,et al.  Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline , 2014 .

[4]  H. Swinney,et al.  Experimental determination of radiated internal wave power without pressure field data , 2014, 1401.2484.

[5]  S. Sarkar,et al.  Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline , 2013 .

[6]  T. Dauxois,et al.  Experimental study of parametric subharmonic instability for internal plane waves , 2013, Journal of Fluid Mechanics.

[7]  Zhong‐Kuo Zhao,et al.  Parametric Subharmonic Instability of the Internal Tide at 29 8 N , 2013 .

[8]  Peter Diamessis,et al.  Reflection of an internal gravity wave beam off a horizontal free-slip surface , 2012 .

[9]  T. Dauxois,et al.  Experimental parametric subharmonic instability in stratified fluids , 2012 .

[10]  T. Dauxois,et al.  Resonant Triad Instability in Stratified Fluids , 2012, 1204.6129.

[11]  M. Mathur,et al.  Internal wave beam propagation in non-uniform stratifications , 2009, Journal of Fluid Mechanics.

[12]  S. Sarkar,et al.  Dynamics of a stratified shear layer above a region of uniform stratification , 2009, Journal of Fluid Mechanics.

[13]  Thierry Dauxois,et al.  Reflection and diffraction of internal waves analyzed with the Hilbert transform , 2008, 0807.1225.

[14]  A. Tejada-Martínez,et al.  Rapid generation of high‐frequency internal waves beneath a wind and wave forced oceanic surface mixed layer , 2008 .

[15]  Robert Pinkel,et al.  Internal waves across the Pacific , 2007 .

[16]  B. Sutherland,et al.  Internal wave transmission in nonuniform flows , 2007 .

[17]  C. Koudella,et al.  Instability mechanisms of a two-dimensional progressive internal gravity wave , 2006, Journal of Fluid Mechanics.

[18]  J. MacKinnon,et al.  Subtropical catastrophe: Significant loss of low‐mode tidal energy at 28.9° , 2005 .

[19]  B. Sutherland,et al.  Internal wave tunnelling , 2004, Journal of Fluid Mechanics.

[20]  Carl Wunsch,et al.  VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS , 2004 .

[21]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[22]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis , 1998 .

[23]  P. Drazin On the instability of an internal gravity wave , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  R. Mied The occurrence of parametric instabilities in finite-amplitude internal gravity waves , 1976, Journal of Fluid Mechanics.

[25]  M. Lighthill,et al.  Waves In Fluids , 2002 .