Optical rotation studied by density-functional and coupled-cluster methods

We describe the implementation of a gauge-origin independent, time-dependent linear-response formalism for the calculation of optical rotation using London atomic orbitals and density-functional theory. We test the accuracy of density-functional methods for studying optical rotation on difficult systems by modeling the optical rotation as a function of the dihedral angle. We also report the first linear response coupled-cluster singles-and-doubles results of optical rotation. The B3LYP functional gives reliable results for the optical rotation, even for molecules with nearly degenerate excited electronic states of opposite polarization.

[1]  M. Rérat,et al.  Theoretical treatment of the electronic circular dichroism spectrum and the optical rotatory power of H2S2 , 1998 .

[2]  M. Frisch,et al.  Calculation of Optical Rotation Using Density Functional Theory , 2001 .

[3]  Trygve Helgaker,et al.  Nuclear shielding constants by density functional theory with gauge including atomic orbitals , 2000 .

[4]  S. Grimme Calculation of frequency dependent optical rotation using density functional response theory , 2001 .

[5]  R. Amos Electric and magnetic properties of CO, HF, HCI, and CH3F , 1982 .

[6]  H. Koch,et al.  Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties , 1998 .

[7]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[8]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[9]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[10]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[11]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[12]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[13]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[14]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[15]  J. Tomasi,et al.  Prediction of optical rotation using density functional theory: 6,8-dioxabicyclo[3.2.1]octanes , 2000 .

[16]  A comparison of ab initio optical rotations obtained with static and dynamic methods , 1998 .

[17]  J. Kirkwood On the Theory of Optical Rotatory Power , 1937 .

[18]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[19]  J. Olsen,et al.  Vibrational Raman optical activity calculations using London atomic orbitals , 1994 .

[20]  P. Polavarapu AB INITIO MOLECULAR OPTICAL ROTATIONS AND ABSOLUTE CONFIGURATIONS , 1997 .

[21]  Ernest L. Eliel,et al.  Stereochemistry of Organic Compounds , 1962 .

[22]  M. Frisch,et al.  Hartree−Fock and Density Functional Theory ab Initio Calculation of Optical Rotation Using GIAOs: Basis Set Dependence , 2000 .

[23]  P. Polavarapu,et al.  ABSOLUTE STEREOCHEMISTRY OF CHIRAL MOLECULES FROM AB INITIO THEORETICAL AND EXPERIMENTAL MOLECULAR OPTICAL ROTATIONS , 1998 .

[24]  K. Ruud,et al.  Molecular optical rotation: an evaluation of semiempirical models , 2000 .

[25]  P. Wipf,et al.  Theory-Assisted Determination of Absolute Stereochemistry for Complex Natural Products via Computation of Molar Rotation Angles , 1998 .