Optimal approximation to unitary quantum operators with linear optics

Linear optical systems acting on photon number states produce many interesting evolutions, but cannot give all the allowed quantum operations on the input state. Using Toponogov’s theorem from differential geometry, we propose an iterative method that, for any arbitrary quantum operator U acting on n photons in m modes, returns an operator $$\widetilde{U}$$ U ~ which can be implemented with linear optics. The approximation method is locally optimal and converges. The resulting operator $$\widetilde{U}$$ U ~ can be translated into an experimental optical setup using previous results.

[1]  An algebraic approach to linear-optical schemes for deterministic quantum computing , 2005, quant-ph/0504108.

[2]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[3]  P. Knight,et al.  Introductory quantum optics , 2004 .

[4]  J. Moyano-Fernández,et al.  Multiple photon effective Hamiltonians in linear quantum optical networks , 2019, Optics Communications.

[5]  Construction of optical networks by virture of the IWOP technique , 1997 .

[6]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[7]  S. Scheel,et al.  Permanents in linear optical networks , 2004, quant-ph/0406127.

[8]  P. Knight,et al.  Introductory Quantum Optics: Frontmatter , 2004 .

[9]  Julio Jos'e Moyano-Fern'andez,et al.  Method to determine which quantum operations can be realized with linear optics with a constructive implementation recipe , 2019, Physical Review A.

[10]  Adam Bouland,et al.  Generation of universal linear optics by any beam splitter , 2013, 1310.6718.

[11]  L. Biedenharn Angular momentum in quantum physics , 1981 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[14]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[15]  Géza Tóth,et al.  QUBIT4MATLAB V3.0: A program package for quantum information science and quantum optics for MATLAB , 2007, Comput. Phys. Commun..

[16]  U. Leonhardt Essential Quantum Optics: From Quantum Measurements to Black Holes , 2010 .

[17]  A. Neumaier,et al.  LETTER TO THE EDITOR: Explicit effective Hamiltonians for general linear quantum-optical networks , 2003 .

[18]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[19]  James D. Louck,et al.  Angular Momentum in Quantum Physics: Theory and Application , 1984 .

[20]  Johannes Skaar,et al.  Quantum mechanical description of linear optics , 2004 .

[21]  Terry A. Loring,et al.  Computing a logarithm of a unitary matrix with general spectrum , 2012, Numer. Linear Algebra Appl..

[22]  I. Holopainen Riemannian Geometry , 1927, Nature.

[23]  Julio Jos'e Moyano-Fern'andez,et al.  Linear optics only allows every possible quantum operation for one photon or one port , 2015, 1508.04342.

[24]  U. Leonhardt Essential Quantum Optics , 2010 .

[25]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[26]  L. Sánchez-Soto,et al.  Simple factorization of unitary transformations , 2017, 1708.00735.

[27]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[28]  Adam Sawicki,et al.  Universality of beamsplitters , 2015, Quantum Inf. Comput..

[29]  D. Pozar Microwave Engineering , 1990 .

[30]  J. Milnor Curvatures of left invariant metrics on lie groups , 1976 .

[31]  Cosmo Lupo,et al.  Exploring Representation Theory of Unitary Groups via Linear Optical Passive Devices , 2006, Open Syst. Inf. Dyn..