Simulating quantum-optical phenomena with cold atoms in optical lattices
暂无分享,去创建一个
J. Ignacio Cirac | Diego Porras | D. Porras | C. Navarrete-Benlloch | I. D. Vega | Carlos Navarrete-Benlloch | In'es de Vega | J. Ignacio Cirac
[1] Serge Haroche,et al. Superradiance: An essay on the theory of collective spontaneous emission , 1982 .
[2] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[3] K. F. Riley,et al. Mathematical Methods for Physics and Engineering , 1998 .
[4] P. Stehle,et al. Emission of Radiation from a System of Many Excited Atoms , 1968 .
[5] J. Cirac,et al. Collective generation of quantum states of light by entangled atoms , 2008, 0808.2732.
[6] G. Batrouni,et al. Pure Mott phases in confined ultracold atomic systems. , 2009, Physical review letters.
[7] Quantum engineering of photon states with entangled atomic ensembles , 2007, 0704.0641.
[8] Marlan O Scully,et al. Collective lamb shift in single photon Dicke superradiance. , 2009, Physical review letters.
[9] R. Dicke. Coherence in Spontaneous Radiation Processes , 1954 .
[10] T. Hänsch,et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.
[11] G. Agarwal. Master equation approach to spontaneous emission , 1971 .
[12] J. Eberly. Emission of one photon in an electric dipole transition of one among N atoms , 2006 .
[13] Quang,et al. Spontaneous emission near the edge of a photonic band gap. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[14] M. Scully,et al. Directed spontaneous emission from an extended ensemble of N atoms: timing is everything. , 2006, Physical review letters.
[15] J. Cirac,et al. Matter-wave emission in optical lattices: single particle and collective effects. , 2008, Physical review letters.
[16] Immanuel Bloch,et al. Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .
[17] Cheng Chin,et al. Feshbach resonances in ultracold gases , 2008, 0812.1496.
[18] E. Wigner,et al. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .
[19] Immanuel Bloch,et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.
[20] C. Gardiner,et al. Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.
[21] M. S. Zubairy,et al. Quantum optics: Dedication , 1997 .
[22] Sebastian Will,et al. Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.
[23] J. Manassah,et al. Limited superradiant damping of small samples , 1972 .
[24] M. S. Zubairy,et al. Quantum optics: Frontmatter , 1997 .
[25] Baptiste Battelier,et al. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.
[26] S. John. Electromagnetic absorption in a disordered medium near a photon mobility edge , 1984 .
[27] Francesco Petruccione,et al. The Theory of Open Quantum Systems , 2002 .
[28] Quang,et al. Localization of Superradiance near a Photonic Band Gap. , 1995, Physical review letters.
[29] William D. Phillips,et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.
[30] S. Hartmann,et al. Temporal evolution of superradiance in a small sphere , 1974 .
[31] R. Xu,et al. Theory of open quantum systems , 2002 .
[32] Marlan O. Scully,et al. The Super of Superradiance , 2009, Science.
[33] P. Zoller,et al. The cold atom Hubbard toolbox , 2004, cond-mat/0410614.