Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins.

Optical tweezers have emerged as a promising technique for manipulating biological objects. Instead of direct laser exposure, more often than not, optically-trapped beads are attached to the ends or boundaries of the objects for translation, rotation, and stretching. This is referred to as indirect optical manipulation. In this paper, we utilize the concept of robotic gripping to explain the different experimental setups which are commonly used for indirect manipulation of cells, nucleic acids, and motor proteins. We also give an overview of the kind of biological insights provided by this technique. We conclude by highlighting the trends across the experimental studies, and discuss challenges and promising directions in this domain of active current research.

[1]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[2]  Eric R Dufresne,et al.  Multiplexed force measurements on live cells with holographic optical tweezers. , 2009, Optics express.

[3]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[4]  M. Rief,et al.  Myosin V stepping mechanism , 2007, Proceedings of the National Academy of Sciences.

[5]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[6]  Xiaowei Zhuang,et al.  Unraveling DNA Condensation with Optical Tweezers , 2004, Science.

[7]  Kishan Dholakia,et al.  Passive optical separation within a 'nondiffracting' light beam. , 2007, Journal of biomedical optics.

[8]  U. Bockelmann,et al.  Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. , 2002, Biophysical journal.

[9]  Fumihito Arai,et al.  Teleoperated laser manipulator with dielectrophoretic assistance for selective separation of a microbe , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[10]  Carlos Bustamante,et al.  Single molecule transcription elongation. , 2009, Methods.

[11]  U. Bockelmann Single-molecule manipulation of nucleic acids. , 2004, Current opinion in structural biology.

[12]  Shoichi Toyabe,et al.  Observation of DNA pinning at laser focal point on Au surface and its application to single DNA nanowire and cross-wire formation. , 2010, Bioelectrochemistry.

[13]  Sivaraj Sivaramakrishnan,et al.  Single-molecule dual-beam optical trap analysis of protein structure and function. , 2010, Methods in enzymology.

[14]  M W Berns,et al.  Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Joseph Maria Kumar Irudayaraj,et al.  Application of an Optically Induced Electrokinetic Manipulation Technique on Live Bacteria , 2010 .

[16]  Jan Greve,et al.  Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers , 2001, Nature Structural Biology.

[17]  Wenhao Huang,et al.  Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers , 2010, IEEE Transactions on Biomedical Engineering.

[18]  Ignacio Tinoco,et al.  Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. , 2006, Biophysical journal.

[19]  J. Sellers,et al.  Direct observation of the myosin-V power stroke and its reversal , 2010, Nature Structural &Molecular Biology.

[20]  Jean-François Léger,et al.  Probing complex RNA structures by mechanical force , 2003, The European physical journal. E, Soft matter.

[21]  G. V. Shivashankar,et al.  Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer , 1997 .

[22]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[23]  Steven M Block,et al.  Folding and unfolding single RNA molecules under tension. , 2008, Current opinion in chemical biology.

[24]  Matthias Rief,et al.  Force-dependent stepping kinetics of myosin-V. , 2005, Biophysical journal.

[25]  Yong Liu,et al.  Integrated cell manipulation system--CMOS/microfluidic hybrid. , 2007, Lab on a chip.

[26]  B G de Grooth,et al.  Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. , 1999, Cytometry.

[27]  R. Simmons,et al.  Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. , 1999, Biophysical journal.

[28]  T. Yanagida,et al.  Mechanics of single kinesin molecules measured by optical trapping nanometry. , 1997, Biophysical journal.

[29]  Kerstin Ramser,et al.  Optical manipulation for single‐cell studies , 2010, Journal of biophotonics.

[30]  Kishan Dholakia,et al.  Intracellular Dielectric Tagging for Improved Optical Manipulation of Mammalian Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[32]  V. Subramaniam,et al.  Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy. , 2009, Biophysical journal.

[33]  G. V. Shivashankar,et al.  Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience , 2002 .

[34]  E. Peterman,et al.  Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. , 2010, Methods in enzymology.

[35]  Scott Forth,et al.  Passive torque wrench and angular position detection using a single-beam optical trap. , 2010, Optics letters.

[36]  David Keller,et al.  Single-molecule studies of the effect of template tension on T7 DNA polymerase activity , 2000, Nature.

[37]  Changbong Hyeon,et al.  Force-dependent hopping rates of RNA hairpins can be estimated from accurate measurement of the folding landscapes , 2008, Proceedings of the National Academy of Sciences.

[38]  Andy Sischka,et al.  Binding kinetics of bisintercalator Triostin a with optical tweezers force mechanics. , 2009, Biophysical journal.

[39]  Kyohei Terao,et al.  On-site manipulation of single chromosomal DNA molecules by using optically driven microstructures. , 2008, Lab on a chip.

[40]  C. Bustamante,et al.  Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. , 2000, Science.

[41]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[42]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[43]  Kenji Yasuda,et al.  Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system. , 2006, Biochemical and biophysical research communications.

[44]  M.C. Wu,et al.  Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  M. Kaya,et al.  Nonlinear Elasticity and an 8-nm Working Stroke of Single Myosin Molecules in Myofilaments , 2010, Science.

[46]  Fumihito Arai,et al.  In-situ formation of a gel microbead for laser micromanipulation of microorganisms, DNA and virus , 2006 .

[47]  Yann R Chemla,et al.  Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. , 2010, Physical chemistry chemical physics : PCCP.

[48]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[49]  Ignacio Tinoco,et al.  Real-time control of the energy landscape by force directs the folding of RNA molecules , 2007, Proceedings of the National Academy of Sciences.

[50]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  M W Berns,et al.  Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges. , 1993, Biophysical journal.

[52]  R. Cross,et al.  Mechanics of the kinesin step , 2005, Nature.

[53]  Chuan Li,et al.  Nanomechanical characterization of red blood cells using optical tweezers , 2008, Journal of materials science. Materials in medicine.

[54]  W. Greenleaf,et al.  Single-molecule studies of RNA polymerase: motoring along. , 2008, Annual review of biochemistry.

[55]  Alexander Rohrbach,et al.  Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  L. Oddershede,et al.  Optical Tweezers Cause Physiological Damage to Escherichia coli and Listeria Bacteria , 2008, Applied and Environmental Microbiology.

[57]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[58]  Satyandra K. Gupta,et al.  A Decoupled and Prioritized Stochastic Dynamic Programming Approach for Automated Transport of Multiple Particles Using Optical Tweezers , 2009 .

[59]  Ignacio Tinoco,et al.  Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. , 2007, Biophysical journal.

[60]  Arpita Upadhyaya,et al.  Tension in tubulovesicular networks of Golgi and endoplasmic reticulum membranes. , 2004, Biophysical journal.

[61]  Jonathon Howard,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 and S2 Tables S1 to S4 References Protein Friction Limits Diffusive and Directed Movements of Kinesin Motors on Microtubules , 2022 .

[62]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[63]  C L Cesar,et al.  Studying taxis in real time using optical tweezers: applications for Leishmania amazonensis parasites. , 2009, Micron.

[64]  M. Berns,et al.  Wavelength dependence of cell cloning efficiency after optical trapping. , 1996, Biophysical journal.

[65]  M. Ozkan,et al.  Electro-optical platform for the manipulation of live cells , 2003 .

[66]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[67]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[68]  J. Liphardt,et al.  Reversible Unfolding of Single RNA Molecules by Mechanical Force , 2001, Science.

[69]  F. Ritort,et al.  Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments. , 2007, Biophysical journal.

[70]  M. Bartoo,et al.  The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. , 1998, Biophysical journal.

[71]  Ignacio Tinoco,et al.  How RNA unfolds and refolds. , 2008, Annual review of biochemistry.

[72]  K. König,et al.  Cell damage by near-IR microbeams , 1995, Nature.

[73]  Felix Ritort,et al.  Measurement of work in single-molecule pulling experiments. , 2009, The Journal of chemical physics.

[74]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[75]  Kazuhiko Kinosita,et al.  Unbinding force of a single motor molecule of muscle measured using optical tweezers , 1995, Nature.

[76]  Clemens F. Kaminski,et al.  Biophotonic techniques for the study of malaria-infected red blood cells , 2010, Medical & Biological Engineering & Computing.

[77]  Akira Mizuno,et al.  Manipulation of single coiled DNA molecules by laser clustering of microparticles , 2002 .

[78]  Matthias Rief,et al.  Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner , 2010, Proceedings of the National Academy of Sciences.

[79]  P. Forscher,et al.  In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. , 1995, Journal of cell science.

[80]  William H Guilford,et al.  The viscoelastic properties of microvilli are dependent upon the cell-surface molecule. , 2010, Biochemical and biophysical research communications.

[81]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[82]  Ming-Tzo Wei,et al.  Complex fluids: probing mechanical properties of biological systems with optical tweezers. , 2010, Annual review of physical chemistry.

[83]  William S. Ryu,et al.  Force and Velocity of Mycoplasma mobile Gliding , 2002, Journal of bacteriology.

[84]  Ashley R. Carter,et al.  Precision surface-coupled optical-trapping assay with one-basepair resolution. , 2009, Biophysical journal.

[85]  Vincent Germain,et al.  Automated trapping, assembly, and sorting with holographic optical tweezers. , 2006, Optics express.

[86]  Carlos Bustamante,et al.  Peptide nucleic acids as tools for single-molecule sequence detection and manipulation. , 2010, Nano letters.

[87]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[88]  Steven M. Block,et al.  Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping , 2009, Proceedings of the National Academy of Sciences.

[89]  Adriana Fontes,et al.  Measuring electrical and mechanical properties of red blood cells with double optical tweezers. , 2008, Journal of biomedical optics.

[90]  Richard A. Flynn,et al.  Optical Manipulation of Objects and Biological Cells in Microfluidic Devices , 2003 .

[91]  Helmut Grubmüller,et al.  Mechanical properties of single motor molecules studied by three-dimensional thermal force probing in optical tweezers. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[92]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[93]  Ignacio Tinoco,et al.  Characterization of the Mechanical Unfolding of RNA Pseudoknots , 2007, Journal of Molecular Biology.

[94]  Hiroyasu Itoh,et al.  Tying a molecular knot with optical tweezers , 1999, Nature.

[95]  David Allaway,et al.  Optical traps: shedding light on biological processes , 2004, Biotechnology Letters.

[96]  Mikhail Skliar,et al.  Bidirectional power stroke by ncd kinesin. , 2010, Biophysical journal.

[97]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[98]  Jeppe Seidelin Dam,et al.  Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae. , 2010, Journal of biomedical optics.

[99]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[100]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[101]  Gustavo Stolovitzky,et al.  Backscattering from a tethered bead as a probe of DNA flexibility , 1998 .

[102]  Ignacio Tinoco,et al.  RNA reactions one molecule at a time. , 2010, Cold Spring Harbor perspectives in biology.

[103]  Steven M. Block,et al.  Direct observation of the binding state of the kinesin head to the microtubule , 2009, Nature.

[104]  Gwo-Bin Lee,et al.  Manipulation of single DNA molecules by using optically projected images. , 2009, Optics express.

[105]  Michael W. Berns,et al.  Laser trapping in cell biology , 1990 .

[106]  Kishan Dholakia,et al.  Light forces the pace: optical manipulation for biophotonics. , 2010, Journal of biomedical optics.

[107]  Liqun He,et al.  Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers. , 2009, Cryo letters.

[108]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[109]  Kuo-Kang Liu,et al.  An optical-manipulation technique for cells in physiological flows , 2010, Journal of biological physics.

[110]  Jing Wang,et al.  A comparative study of living cell micromechanical properties by oscillatory optical tweezers. , 2008, Optics express.

[111]  Ignacio Tinoco,et al.  Mechanical unfolding of two DIS RNA kissing complexes from HIV-1. , 2009, Journal of molecular biology.

[112]  Gregory Timp,et al.  Optimal optical trap for bacterial viability. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  Hideo Higuchi,et al.  Alternate fast and slow stepping of a heterodimeric kinesin molecule , 2003, Nature Cell Biology.

[114]  Dan Cojoc,et al.  Biological samples micro-manipulation by means of optical tweezers , 2005 .

[115]  Yann R Chemla,et al.  Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. , 2009, Biophysical journal.

[116]  Makoto Shohara,et al.  Zigzag motions of the myosin-coated beads actively sliding along actin filaments suspended between immobilized beads. , 2002, Biochimica et biophysica acta.

[117]  Gijs J. L. Wuite,et al.  Counting RAD51 proteins disassembling from nucleoprotein filaments under tension , 2008, Nature.

[118]  Chi-Hung Lin,et al.  Recent progresses in optical trap-and-stretch of red blood cells , 2007, European Conference on Biomedical Optics.

[119]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[120]  Rik Paesen,et al.  Bond characterization by detection and manipulation of particle mobility in an optical evanescent field biosensor , 2010 .

[121]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[122]  C. Bustamante,et al.  Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Woei Ming Lee,et al.  Optical Separation of Cells on Potential Energy Landscapes: Enhancement With Dielectric Tagging , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[124]  F. Takahashi,et al.  Probing the cell peripheral movements by optical trapping technique. , 2003, Biophysical journal.

[125]  Magnus Andersson,et al.  Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[126]  Chi-Kuang Sun,et al.  Cell manipulation by use of diamond microparticles as handles of optical tweezers , 2001 .

[127]  Sagar Chowdhury,et al.  Indirect optical gripping with triplet traps , 2011 .

[128]  Daniel Isabey,et al.  Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers. , 2002, Journal of biomechanical engineering.

[129]  Hejun Du,et al.  Fundamental principles and applications of microfluidic systems. , 2008, Frontiers in bioscience : a journal and virtual library.

[130]  D. Côte,et al.  Probing DNA and RNA single molecules with a double optical tweezer , 2006, The European physical journal. E, Soft matter.

[131]  Kuo-Kang Liu,et al.  Correlations Between the Experimental and Numerical Investigations on the Mechanical Properties of Erythrocyte by Laser Stretching , 2008, IEEE Transactions on NanoBioscience.

[132]  Yajun Yin,et al.  Mechanical property analysis of stored red blood cell using optical tweezers. , 2009, Colloids and surfaces. B, Biointerfaces.

[133]  M. Uchida,et al.  Micromanipulation: Whole-cell manipulation by optical trapping , 1995, Current Biology.

[134]  Changbong Hyeon,et al.  Theoretical perspectives on protein folding. , 2010, Annual review of biophysics.

[135]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[136]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[137]  S. Quake,et al.  Relaxation of a single DNA molecule observed by optical microscopy. , 1994, Science.

[138]  Steven M. Block,et al.  Applied Force Reveals Mechanistic and Energetic Details of Transcription Termination , 2008, Cell.

[139]  Gijs J. L. Wuite,et al.  See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins , 2008, Nucleic acids research.

[140]  Andrew G. Glen,et al.  APPL , 2001 .

[141]  Haim H Bau,et al.  Using electrical and optical tweezers to facilitate studies of molecular motors. , 2009, Physical chemistry chemical physics : PCCP.