Repeated diagonalization and the numerical computation of the Titchmarsh-Weyl m(λ)-function

The repeated diagonalization techniques used by Eastham to obtain asymptotic results for solutions to linear differential systems are further developed to produce a numerical algorithm for estimating the Titchmarsh-Weyl m-coefficient in the second-order case. These analytic results have been exploited to produce a computer code (RDML1) to generate these solutions and to obtain precise global error bounds.

[1]  W. D. Evans,et al.  Safe numerical bounds for the Titchmarsh–Weyl m(λ)-function , 1993, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. D. Pryce,et al.  A numerical method for the determination of the Titchmarsh-Weyl m-coefficient , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  J. Pryce,et al.  Numerical determination of the Titchmarsh-Weyl m-coefficient and its applications to HELP inequalities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  M. Eastham Reeated Diagonalization and Extended Liouville‐Green Asymptotic Formulae , 1987 .

[5]  M. Eastham,et al.  The asymptotic solution of linear differential systems , 1985 .

[6]  W. D. Evans,et al.  A return to the Hardy-Littlewood integral inequality , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Frank W. J. Olver,et al.  Introduction to Asymptotics and Special Functions , 1974 .

[8]  F.W.J. Olver INTRODUCTION TO ASYMPTOTIC ANALYSIS , 1974 .

[9]  W. N. Everitt XXIII.—On an Extension to an Integro-differential Inequality of Hardy, Littlewood and Polya , 1972, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[10]  R. England,et al.  Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations , 1969, Comput. J..

[11]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[12]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .