Repeated diagonalization and the numerical computation of the Titchmarsh-Weyl m(λ)-function
暂无分享,去创建一个
[1] W. D. Evans,et al. Safe numerical bounds for the Titchmarsh–Weyl m(λ)-function , 1993, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] J. D. Pryce,et al. A numerical method for the determination of the Titchmarsh-Weyl m-coefficient , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[3] J. Pryce,et al. Numerical determination of the Titchmarsh-Weyl m-coefficient and its applications to HELP inequalities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[4] M. Eastham. Reeated Diagonalization and Extended Liouville‐Green Asymptotic Formulae , 1987 .
[5] M. Eastham,et al. The asymptotic solution of linear differential systems , 1985 .
[6] W. D. Evans,et al. A return to the Hardy-Littlewood integral inequality , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] Frank W. J. Olver,et al. Introduction to Asymptotics and Special Functions , 1974 .
[8] F.W.J. Olver. INTRODUCTION TO ASYMPTOTIC ANALYSIS , 1974 .
[9] W. N. Everitt. XXIII.—On an Extension to an Integro-differential Inequality of Hardy, Littlewood and Polya , 1972, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[10] R. England,et al. Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations , 1969, Comput. J..
[11] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[12] H. Weyl,et al. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .