Determinants and clinical significance of natriuretic peptides and hypertrophic cardiomyopathy.

AIMS Atrial and brain natriuretic peptide levels closely reflect impaired left ventricular function in patients with heart failure. In the present study we assessed the determinants and the clinical significance of atrial and brain natriuretic peptide plasma levels in hypertrophic cardiomyopathy. METHODS AND RESULTS In 44 patients with hypertrophic cardiomyopathy (40+/-15 years) we evaluated: (a) atrial and brain natriuretic peptide plasma levels; (b) left ventricular hypertrophy; (c) left ventricular ejection fraction; (d) transmitral and pulmonary venous flow velocity patterns, and left atrial fractional shortening; (e) left ventricular outflow tract gradient; (f) maximal oxygen consumption. Left ventricular hypertrophy influenced only brain natriuretic peptide levels (r=0.32;P<0.05). Atrial and brain natriuretic peptide plasma levels did not correlate with left ventricular ejection fraction, but correlated with left ventricular outflow tract gradient (r=0.35;P<0.05; and r=0.40, P=0.022, respectively) and left atrial fractional shortening (r=-0.57;P<0.001, and r=-0.35;P<0.05, respectively). Atrial but not brain natriuretic peptide plasma levels were inversely related to maximal oxygen consumption (r=-0.35;P<0.05). By stepwise multiple regression analysis, left atrial fractional shortening and left ventricular outflow tract gradient were the only predictors of atrial and brain natriuretic peptide plasma levels, respectively. CONCLUSIONS In hypertrophic cardiomyopathy, atrial natriuretic peptide plasma levels are mainly determined by diastolic function: this explains the relationship with exercise tolerance. In contrast, brain natriuretic peptide plasma levels are mainly determined by left ventricular outflow tract gradient.

[1]  A. D. de Bold,et al.  A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Reprinted from Life Sci. 28:89-94, 1981. , 2001, Journal of the American Society of Nephrology : JASN.

[2]  M. Condorelli,et al.  Exercise capacity in hypertrophic cardiomyopathy depends on left ventricular diastolic function. , 1999, The American journal of cardiology.

[3]  M. Kinoshita,et al.  Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. , 1998, American heart journal.

[4]  M. Chiariello,et al.  Noninvasive evaluation of left ventricular diastolic function in hypertrophic cardiomyopathy. , 1998, The American journal of cardiology.

[5]  R. Nishimura,et al.  Noninvasive Doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathy , 1998 .

[6]  M. Condorelli,et al.  Intrarenal determinants of sodium retention in mild heart failure: effects of angiotensin-converting enzyme inhibition. , 1997, Hypertension.

[7]  K. Bailey,et al.  Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. , 1996, Hypertension.

[8]  K. Nishigaki,et al.  Marked expression of plasma brain natriuretic peptide is a special feature of hypertrophic obstructive cardiomyopathy. , 1996, Journal of the American College of Cardiology.

[9]  A J Tajik,et al.  Noninvasive doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. , 1996, Journal of the American College of Cardiology.

[10]  J. Thomas,et al.  A practical guide to assessment of ventricular diastolic function using Doppler echocardiography. , 1996, Journal of the American College of Cardiology.

[11]  M. Condorelli,et al.  Transition from asymptomatic left ventricular dysfunction to congestive heart failure. , 1995, Journal of cardiac failure.

[12]  I. Belenkie,et al.  Exercise capacity in hypertrophic cardiomyopathy. Role of stroke volume limitation, heart rate, and diastolic filling characteristics. , 1995, Circulation.

[13]  M. Chiariello,et al.  Influence of O2 deprivation, reduced flow, and temperature on release of ANP from rabbit hearts. , 1995, The American journal of physiology.

[14]  S Sasayama,et al.  Ventricular Expression of Brain Natriuretic Peptide in Hypertrophic Cardiomyopathy , 1993, Circulation.

[15]  L. Hatle,et al.  Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: relation to left ventricular diastolic pressures. , 1993, Journal of the American College of Cardiology.

[16]  M. Chiariello,et al.  Angiotensin II Directly Stimulates Release of Atrial Natriuretic Factor in Isolated Rabbit Hearts , 1993, Circulation.

[17]  B. Maron,et al.  Utility of continuous wave Doppler echocardiography in the noninvasive assessment of left ventricular outflow tract pressure gradient in patients with hypertrophic cardiomyopathy. , 1992, Journal of the American College of Cardiology.

[18]  N. de Luca,et al.  Failure of atrial natriuretic factor to increase with saline load in patients with dilated cardiomyopathy and mild heart failure. , 1991, The Journal of clinical investigation.

[19]  A. Labovitz,et al.  Effect of mitral regurgitation on pulmonary venous velocities derived from transesophageal echocardiography color-guided pulsed Doppler imaging. , 1991, Journal of the American College of Cardiology.

[20]  K. Inouye,et al.  Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. , 1991, The Journal of clinical investigation.

[21]  K. Nakao,et al.  Expression and Distribution of Atrial Natriuretic Peptide in Human Hypertrophic Ventricle of Hypertensive Hearts and Hearts With Hypertrophic Cardiomyopathy , 1991, Circulation.

[22]  C. Indolfi,et al.  Converting enzyme inhibition prevents the effects of atrial natriuretic factor on baroreflex responses in humans. , 1990, Circulation.

[23]  K. Hosoda,et al.  Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. , 1989, The Journal of clinical investigation.

[24]  Naoto Minamino,et al.  A new natriuretic peptide in porcine brain , 1988, Nature.

[25]  R. Zimmerman,et al.  Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. , 1988, Circulation research.

[26]  R. Bonow,et al.  Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). , 1987, The New England journal of medicine.

[27]  P. Erne,et al.  Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. , 1986, The New England journal of medicine.

[28]  R. Rodeheffer,et al.  Atrial pressure and secretion of atrial natriuretic factor into the human central circulation. , 1986, Journal of the American College of Cardiology.

[29]  E. Bates,et al.  The relationship between plasma levels of immunoreactive atrial natriuretic hormone and hemodynamic function in man. , 1986, Circulation.

[30]  G. Reeder,et al.  Atrial natriuretic peptide elevation in congestive heart failure in the human. , 1986, Science.

[31]  B. Maron,et al.  Diastolic abnormalities in patients with hypertrophic cardiomyopathy: relation to magnitude of left ventricular hypertrophy. , 1985, Circulation.

[32]  R. Bonow,et al.  Hypertrophic cardiomyopathy. , 1987, Disease-a-month : DM.

[33]  A. D. de Bold,et al.  A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. , 1981, Life sciences.