Data-Driven Rate-Optimal Specification Testing in Regression Models
暂无分享,去创建一个
[1] Takemi Yanagimoto,et al. The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model , 1987 .
[2] Joel L. Horowitz,et al. An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative , 2001 .
[3] P. Gozalo,et al. Nonparametric bootstrap analysis with applications to demographic effects in demand functions. , 1997, Journal of econometrics.
[4] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[5] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[6] Clifford H. Spiegelman,et al. Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .
[7] V. Spokoiny. Adaptive hypothesis testing using wavelets , 1996 .
[8] E. Mammen,et al. Comparing Nonparametric Versus Parametric Regression Fits , 1993 .
[9] William Alexander,et al. Nonparametric Smoothing and Lack-of-Fit Tests , 1999, Technometrics.
[10] Chunming Zhang. Adaptive tests of regression functions via multiscale generalized likelihood ratios , 2003 .
[11] S. Geer. Empirical Processes in M-Estimation , 2000 .
[12] E. Mammen,et al. Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .
[13] Jianqing Fan. Test of Significance Based on Wavelet Thresholding and Neyman's Truncation , 1996 .
[14] Joel L. Horowitz,et al. An Adaptive, Rate-Optimal Test of a Parametric Model Against a Nonparametric Alternative , 1999 .
[15] Peter F. de Jong,et al. A central limit theorem for generalized quadratic forms , 1987 .
[16] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[17] B. Silverman,et al. The estimation of residual variance in nonparametric regression , 1988 .
[18] Cun-Hui Zhang,et al. Asymptotic equivalence theory for nonparametric regression with random design , 2002 .
[19] Y. Baraud. Model selection for regression on a random design , 2002 .
[20] E. Giné,et al. Limit Theorems for $U$-Processes , 1993 .
[21] J. Zheng,et al. A consistent test of functional form via nonparametric estimation techniques , 1996 .
[22] G. Claeskens,et al. Testing the Fit of a Parametric Function , 1999 .
[23] A. V. D. Vaart,et al. Asymptotic Statistics: U -Statistics , 1998 .
[24] Jianqing Fan,et al. Sieve empirical likelihood ratio tests for nonparametric functions , 2004, math/0503667.
[25] L. Paris. DATA-DRIVEN RATE-OPTIMAL SPECIFICATION TESTING IN REGRESSION MODELS By Emmanuel Guerre and Pascal Lavergne , 2003 .
[26] T. Gasser,et al. Residual variance and residual pattern in nonlinear regression , 1986 .
[27] 조재현. Goodness of fit tests for parametric regression models , 2004 .
[28] Testing goodness of fit of polynomial models via spline smoothing techniques , 1994 .
[29] L. Goddard. Approximation of Functions , 1965, Nature.
[30] B. Laurent,et al. ADAPTIVE TESTS OF LINEAR HYPOTHESES BY MODEL SELECTION , 2003 .
[31] J. B. Ramsey,et al. Tests for Specification Errors in Classical Linear Least‐Squares Regression Analysis , 1969 .
[32] G. Claeskens,et al. Testing lack of fit in multiple regression , 2000 .
[33] J. Rice. Bandwidth Choice for Nonparametric Regression , 1984 .
[34] R. L. Eubank,et al. Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .
[35] Jianqing Fan,et al. Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .
[36] E. Guerre,et al. OPTIMAL MINIMAX RATES FOR NONPARAMETRIC SPECIFICATION TESTING IN REGRESSION MODELS , 2002, Econometric Theory.
[37] T. Ledwina. Data-Driven Version of Neyman's Smooth Test of Fit , 1994 .
[38] Michel Loève,et al. Probability Theory I , 1977 .
[39] Holger Dette,et al. A consistent test for the functional form of a regression based on a difference of variance estimators , 1999 .
[40] V. Spokoiny. Data-driven testing the fit of linear models , 2000 .