Data-Driven Rate-Optimal Specification Testing in Regression Models

We propose new data-driven smooth tests for a parametric regression function. The smoothing parameter is selected through a new criterion that favors a large smoothing parameter under the null hypothesis. The resulting test is adaptive rate-optimal and consistent against Pitman local alternatives approaching the parametric model at a rate arbitrarily close to 1/sqrt(n). Asymptotic critical values come from the standard normal distribution and bootstrap can be used in small samples. A general formalization allows to consider a large class of linear smoothing methods, which can be tailored for detection of additive alternatives.

[1]  Takemi Yanagimoto,et al.  The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model , 1987 .

[2]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative , 2001 .

[3]  P. Gozalo,et al.  Nonparametric bootstrap analysis with applications to demographic effects in demand functions. , 1997, Journal of econometrics.

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[6]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[7]  V. Spokoiny Adaptive hypothesis testing using wavelets , 1996 .

[8]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[9]  William Alexander,et al.  Nonparametric Smoothing and Lack-of-Fit Tests , 1999, Technometrics.

[10]  Chunming Zhang Adaptive tests of regression functions via multiscale generalized likelihood ratios , 2003 .

[11]  S. Geer Empirical Processes in M-Estimation , 2000 .

[12]  E. Mammen,et al.  Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .

[13]  Jianqing Fan Test of Significance Based on Wavelet Thresholding and Neyman's Truncation , 1996 .

[14]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Model Against a Nonparametric Alternative , 1999 .

[15]  Peter F. de Jong,et al.  A central limit theorem for generalized quadratic forms , 1987 .

[16]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[17]  B. Silverman,et al.  The estimation of residual variance in nonparametric regression , 1988 .

[18]  Cun-Hui Zhang,et al.  Asymptotic equivalence theory for nonparametric regression with random design , 2002 .

[19]  Y. Baraud Model selection for regression on a random design , 2002 .

[20]  E. Giné,et al.  Limit Theorems for $U$-Processes , 1993 .

[21]  J. Zheng,et al.  A consistent test of functional form via nonparametric estimation techniques , 1996 .

[22]  G. Claeskens,et al.  Testing the Fit of a Parametric Function , 1999 .

[23]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[24]  Jianqing Fan,et al.  Sieve empirical likelihood ratio tests for nonparametric functions , 2004, math/0503667.

[25]  L. Paris DATA-DRIVEN RATE-OPTIMAL SPECIFICATION TESTING IN REGRESSION MODELS By Emmanuel Guerre and Pascal Lavergne , 2003 .

[26]  T. Gasser,et al.  Residual variance and residual pattern in nonlinear regression , 1986 .

[27]  조재현 Goodness of fit tests for parametric regression models , 2004 .

[28]  Testing goodness of fit of polynomial models via spline smoothing techniques , 1994 .

[29]  L. Goddard Approximation of Functions , 1965, Nature.

[30]  B. Laurent,et al.  ADAPTIVE TESTS OF LINEAR HYPOTHESES BY MODEL SELECTION , 2003 .

[31]  J. B. Ramsey,et al.  Tests for Specification Errors in Classical Linear Least‐Squares Regression Analysis , 1969 .

[32]  G. Claeskens,et al.  Testing lack of fit in multiple regression , 2000 .

[33]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[34]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[35]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[36]  E. Guerre,et al.  OPTIMAL MINIMAX RATES FOR NONPARAMETRIC SPECIFICATION TESTING IN REGRESSION MODELS , 2002, Econometric Theory.

[37]  T. Ledwina Data-Driven Version of Neyman's Smooth Test of Fit , 1994 .

[38]  Michel Loève,et al.  Probability Theory I , 1977 .

[39]  Holger Dette,et al.  A consistent test for the functional form of a regression based on a difference of variance estimators , 1999 .

[40]  V. Spokoiny Data-driven testing the fit of linear models , 2000 .