Biogeography-Based Optimization

Biogeography is a discipline of the distribution, migration, and extinction of biological populations in habitats. Biogeography-based optimization (BBO) is a heuristic inspired by biogeography for optimization problems, where each solution is analogous to a habitat with an immigration rate and an emigration rate. BBO evolves a population of solutions by continuously migrating features probably from good solutions to poor solutions. This chapter introduces the basic BBO and its recent advances for constrained optimization, multi-objective optimization, and combinatorial optimization.

[1]  Ian C. Parmee,et al.  Evolutionary and adaptive computing in engineering design , 2001 .

[2]  Dan Simon,et al.  Analysis of migration models of biogeography-based optimization using Markov theory , 2011, Eng. Appl. Artif. Intell..

[3]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[4]  Tetsuyuki Takahama,et al.  Efficient constrained optimization by the ε constrained adaptive differential evolution , 2010, IEEE Congress on Evolutionary Computation.

[5]  Bi Xiao-ju Multi-objective optimization based on hybrid biogeography-based optimization , 2014 .

[6]  Zheng Wang,et al.  Biogeography-Based Optimization for the Traveling Salesman Problems , 2010, 2010 Third International Joint Conference on Computational Science and Optimization.

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[9]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[10]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[11]  Peter J. Fleming,et al.  The Stud GA: A Mini Revolution? , 1998, PPSN.

[12]  Patrick Siarry,et al.  Biogeography-based optimization for constrained optimization problems , 2012, Comput. Oper. Res..

[13]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[14]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[15]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[16]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[17]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[18]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[19]  Ian C. Parmee The Development of Evolutionary and Adaptive Search Strategies for Engineering Design , 2001 .

[20]  Hu Peng,et al.  Novel Binary Biogeography-Based Optimization Algorithm for the Knapsack Problem , 2012, ICSI.

[21]  Zbigniew Michalewicz,et al.  Inver-over Operator for the TSP , 1998, PPSN.

[22]  Dan Simon,et al.  Oppositional biogeography-based optimization for combinatorial problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[23]  T. Wesche,et al.  Modified Habitat Suitability Index Model for Brown Trout in Southeastern Wyoming , 1987 .

[24]  Haiping Ma,et al.  An analysis of the equilibrium of migration models for biogeography-based optimization , 2010, Inf. Sci..

[25]  Karima Benatchba,et al.  Self Organized Biogeography Algorithm for Clustering , 2013, IWINAC.

[26]  Yu-Jun Zheng,et al.  Ecogeography-based optimization: Enhancing biogeography-based optimization with ecogeographic barriers and differentiations , 2014, Comput. Oper. Res..

[27]  Xianpeng Wang,et al.  A Hybrid Multiobjective Evolutionary Algorithm for Multiobjective Optimization Problems , 2013, IEEE Transactions on Evolutionary Computation.

[28]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  N. Hansen,et al.  Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem , 2015, Evolutionary Computation.

[31]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[32]  Xiaojun Bi,et al.  Constrained Optimization Based on Epsilon Constrained Biogeography-Based Optimization , 2012, 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[33]  Dan Simon,et al.  Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms , 2011, Inf. Sci..

[34]  Alfred Russel Wallace,et al.  The geographical distribution of animals : with a study of the relations of living and extinct faunas as elucidating the past changes of the earth's surface / by Alfred Russel Wallace ; in two volumes ; with maps and illustrations. , 1876 .

[35]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[36]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[37]  Haiping Ma,et al.  Handling multiple objectives with biogeography-based optimization , 2012, Int. J. Autom. Comput..

[38]  Lifang Xu,et al.  Biogeography migration algorithm for traveling salesman problem , 2010, Int. J. Intell. Comput. Cybern..

[39]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[40]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[41]  Y. Ho,et al.  Simple Explanation of the No-Free-Lunch Theorem and Its Implications , 2002 .