Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial

[1]  J. Wells,et al.  Microbial Regulation of Host Physiology by Short-chain Fatty Acids. , 2021, Trends in microbiology.

[2]  Lanjuan Li,et al.  The Intestinal Microbiota and Colorectal Cancer , 2020, Frontiers in Immunology.

[3]  T. Spector,et al.  A reference map of potential determinants for the human serum metabolome , 2020, Nature.

[4]  J. Tap,et al.  Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial , 2020, Scientific Reports.

[5]  H. Makino,et al.  Dynamic analysis of human small intestinal microbiota after an ingestion of fermented milk by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique , 2020, Gut microbes.

[6]  P. Bork,et al.  Polarization of microbial communities between competitive and cooperative metabolism , 2020, bioRxiv.

[7]  Jianguo Xia,et al.  Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data , 2020, Nature Protocols.

[8]  S. Raimondi,et al.  Profiling of Protein Degraders in Cultures of Human Gut Microbiota , 2019, Front. Microbiol..

[9]  G. O’Grady,et al.  Impact of temporary ileostomy on long‐term quality of life and bowel function: a systematic review and meta‐analysis , 2019, ANZ journal of surgery.

[10]  M. Derrien,et al.  The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response , 2019, Scientific Reports.

[11]  M. Kleerebezem,et al.  Understanding mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. , 2019, Current opinion in biotechnology.

[12]  Othman Soufan,et al.  NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis , 2019, Nucleic Acids Res..

[13]  M. Blaser,et al.  Role of the microbiome in human development , 2019, Gut.

[14]  T. Weir,et al.  The gut microbiota at the intersection of diet and human health , 2018, Science.

[15]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[16]  Itai Sharon,et al.  Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features , 2018, Cell.

[17]  H. Sokol,et al.  Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice , 2018, Nature Communications.

[18]  Choong-Kyun Noh,et al.  Effects of the Administration of Probiotics on Fecal Microbiota Diversity and Composition in Healthy Individuals , 2018, Journal of neurogastroenterology and motility.

[19]  Daniel Preussger,et al.  Ecology and evolution of metabolic cross-feeding interactions in bacteria. , 2018, Natural product reports.

[20]  J. Miyoshi,et al.  Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. , 2018, Cell host & microbe.

[21]  K. Zengler,et al.  The social network of microorganisms — how auxotrophies shape complex communities , 2018, Nature Reviews Microbiology.

[22]  P. Bork,et al.  The Human Gut Microbiome: From Association to Modulation , 2018, Cell.

[23]  T. Z. Waise,et al.  Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis. , 2018, Cell metabolism.

[24]  David A. Drew,et al.  Stability of the human faecal microbiome in a cohort of adult men , 2018, Nature Microbiology.

[25]  T. Z. Waise,et al.  Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. , 2018, Cell metabolism.

[26]  Suzanne M. Paley,et al.  The MetaCyc database of metabolic pathways and enzymes , 2017, Nucleic Acids Res..

[27]  C. Huttenhower,et al.  Erratum: Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[28]  A. Lyra,et al.  Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention , 2017, BMJ open gastroenterology.

[29]  Benjamin M Hillmann,et al.  Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. , 2016, Cell host & microbe.

[30]  T. R. Licht,et al.  Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut , 2016, Nature Microbiology.

[31]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[32]  V. Cardoso,et al.  The role of immunomodulators on intestinal barrier homeostasis in experimental models. , 2015, Clinical nutrition.

[33]  E. Segal,et al.  Personalized Nutrition by Prediction of Glycemic Responses , 2015, Cell.

[34]  Jeroen Raes,et al.  Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates , 2015, Gut.

[35]  M. Derrien,et al.  Fate, activity, and impact of ingested bacteria within the human gut microbiota. , 2015, Trends in microbiology.

[36]  V. de Crécy-Lagard,et al.  Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes , 2015, Front. Genet..

[37]  M. Kleerebezem,et al.  The small intestine microbiota, nutritional modulation and relevance for health. , 2015, Current opinion in biotechnology.

[38]  H. Sokol,et al.  Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice , 2015, Gut microbes.

[39]  F. Bushman,et al.  Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. , 2014, Gastroenterology.

[40]  Glenn R. Gibson,et al.  The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic , 2014 .

[41]  K. Strissel,et al.  Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice , 2014, The ISME Journal.

[42]  M. Shearer,et al.  Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis , 2014, Journal of Lipid Research.

[43]  M. Kleerebezem,et al.  Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. , 2013, Trends in immunology.

[44]  A. Knoll,et al.  Animals in a bacterial world, a new imperative for the life sciences , 2013, Proceedings of the National Academy of Sciences.

[45]  F. Bäckhed,et al.  Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. , 2013, Cell metabolism.

[46]  D. Tomé,et al.  Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. , 2013, Pharmacological research.

[47]  B. Foligné,et al.  Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans , 2012, PloS one.

[48]  M. Garcia-Conesa,et al.  Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. , 2012, Journal of separation science.

[49]  T. Romanuk,et al.  A Meta-Analysis of Probiotic Efficacy for Gastrointestinal Diseases , 2012, PloS one.

[50]  Peer Bork,et al.  The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates , 2012, The ISME Journal.

[51]  T. Meyer,et al.  Colonic contribution to uremic solutes. , 2011, Journal of the American Society of Nephrology : JASN.

[52]  H. Dupont,et al.  The intestinal microbiota and chronic disorders of the gut , 2011, Nature Reviews Gastroenterology &Hepatology.

[53]  Michiel Kleerebezem,et al.  High temporal and inter-individual variation detected in the human ileal microbiota. , 2010, Environmental microbiology.

[54]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[55]  M. Kleerebezem,et al.  Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance , 2009, Proceedings of the National Academy of Sciences.

[56]  E. Zoetendal,et al.  Microbial communities in the human small intestine: coupling diversity to metagenomics. , 2007, Future microbiology.

[57]  J. Doré,et al.  Survival of Lactobacillus casei in the Human Digestive Tract after Consumption of Fermented Milk , 2006, Applied and Environmental Microbiology.

[58]  Mitsuo Sakamoto,et al.  Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. , 2005, Journal of medical microbiology.

[59]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[60]  G. Macfarlane,et al.  Dissimilatory amino Acid metabolism in human colonic bacteria. , 1997, Anaerobe.

[61]  O. Kandler,et al.  Carbohydrate metabolism in lactic acid bacteria , 1983, Antonie van Leeuwenhoek.

[62]  B. Lacy,et al.  Anatomy and Physiology of the Small Bowel. , 2017, Gastrointestinal endoscopy clinics of North America.

[63]  A. Slobodkin The Family Peptostreptococcaceae , 2014 .

[64]  C.J.F. ter Braak,et al.  Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0) , 2012 .

[65]  K. Verbeke,et al.  Functional analysis of colonic bacterial metabolism: relevant to health? , 2012, American journal of physiology. Gastrointestinal and liver physiology.

[66]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..