The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

João Almeida | Mikko Sipilä | Katrianne Lehtipalo | Taina Ruuskanen | Hanna Vehkamäki | Serge Mathot | António Tomé | Petri Vaattovaara | Ari Laaksonen | Urs Baltensperger | Sebastian Ehrhart | Antti Onnela | Annele Virtanen | Christina Williamson | Tuukka Petäjä | Tuomo Nieminen | Jasper Kirkby | Markku Kulmala | Ilona Riipinen | Juha Kangasluoma | Roberto Guida | I. Riipinen | T. Petäjä | J. Smith | P. Winkler | A. Virtanen | D. Worsnop | R. Flagan | R. Guida | J. Kirkby | M. Kulmala | U. Baltensperger | K. Carslaw | M. Rissanen | T. Nieminen | A. Laaksonen | F. Riccobono | A. Franchin | V. Kerminen | H. Vehkamäki | A. Onnela | A. Hansel | D. Wimmer | W. Jud | J. Tröstl | J. Dommen | I. Ortega | M. Sipilä | N. Donahue | S. Schallhart | Josef Dommen | Jonathan Duplissy | Veli-Matti Kerminen | Armin Hansel | K. Lehtipalo | S. Schobesberger | J. Curtius | Ralf Schnitzhofer | Richard C Flagan | Paul M Winkler | Paul E Wagner | A. Praplan | Federico Bianchi | Jenni Kontkanen | Helmi Keskinen | Joachim Curtius | T. Ruuskanen | Kenneth S Carslaw | J. Kangasluoma | Alessandro Franchin | Andreas Kürten | Agnieszka Kupc | Francesco Riccobono | Linda Rondo | Siegfried Schobesberger | Georgios Tsagkogeorgas | Daniela Wimmer | Antonio Amorim | Martin Breitenlechner | Werner Jud | M. Breitenlechner | Neil M Donahue | Tuija Jokinen | Mario Simon | Jasmin Tröstl | Douglas R Worsnop | Ismael K Ortega | Tinja Olenius | T. Olenius | S. Mathot | Taina Yli-Juuti | Lars Ahlm | Jani Hakala | Nina Sarnela | Alexey Adamov | Markus Leiminger | Andrew J Downard | Eimear M Dunne | Jaeseok Kim | Oona Kupiainen-Määttä | Michael J Lawler | Arnaud Praplan | Matti P Rissanen | Filipe D Santos | Simon Schallhart | James N Smith | Aron E Vrtala | J. Duplissy | A. Kupc | C. Williamson | N. Sarnela | T. Jokinen | J. Hakala | T. Yli-Juuti | H. Keskinen | F. Bianchi | J. Kontkanen | L. Ahlm | P. Wagner | A. Vrtala | A. Kürten | R. Schnitzhofer | A. Adamov | A. Tomé | M. Simon | S. Ehrhart | O. Kupiainen-Määttä | Jaeseok Kim | A. Amorim | L. Rondo | P. Vaattovaara | J. Almeida | M. Leiminger | E. Dunne | G. Tsagkogeorgas | M. Lawler | Andrew J. Downard | F. Santos | Federico Bianchi | O. Kupiainen‐Määttä

[1]  K. Lehtinen,et al.  Atmospheric new particle formation: real and apparent growth of neutral and charged particles , 2011 .

[2]  Peter H. McMurry,et al.  Photochemical aerosol formation from SO2: A theoretical analysis of smog chamber data , 1980 .

[3]  D. Tanner,et al.  Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere , 1993 .

[4]  J. Curtius,et al.  Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry , 2010 .

[5]  Douglas R. Worsnop,et al.  The contribution of organics to atmospheric nanoparticle growth , 2012 .

[6]  A. Viggiano,et al.  The effect of trimethylamine on atmospheric nucleation involving H 2 SO 4 , 2010 .

[7]  João Almeida,et al.  Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions , 2014, Proceedings of the National Academy of Sciences.

[8]  I. Riipinen,et al.  Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä , 2006 .

[9]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[10]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[11]  Timothy M. VanReken,et al.  Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth , 2008 .

[12]  A. Wisthaler,et al.  O2+ as reagent ion in the PTR-MS instrument , 2007 .

[13]  I. Riipinen,et al.  Growth rates of atmospheric molecular clusters based on appearance times and collision-evaporation fluxes : Growth by monomers , 2014 .

[14]  K. Lehtinen,et al.  Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed , 2010 .

[15]  M. Kulmala,et al.  Annual and size dependent variation of growth rates and ion concentrations in boreal forest , 2005 .

[16]  K. Lehtinen,et al.  Effect of condensation rate enhancement factor on 3‐nm (diameter) particle formation in binary ion‐induced and homogeneous nucleation , 2003 .

[17]  T. Petäjä,et al.  Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Re , 2012 .

[18]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[19]  Mikael Ehn,et al.  Observations of aminium salts in atmospheric nanoparticles and possible climatic implications , 2010, Proceedings of the National Academy of Sciences.

[20]  T. Petäjä,et al.  An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions , 2011 .

[21]  U. Baltensperger,et al.  Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign , 2012 .

[22]  J. Smith,et al.  Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei , 2012 .

[23]  F. Yu,et al.  Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole‐charge interaction , 2003 .

[24]  T. Petäjä,et al.  Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth , 2012 .

[25]  J. Curtius,et al.  Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid. , 2012, The journal of physical chemistry. A.

[26]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[27]  R. McGraw,et al.  Effects of amines on formation of sub‐3 nm particles and their subsequent growth , 2012 .

[28]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[29]  T. Petäjä,et al.  Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range , 2013 .

[30]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[31]  T. Petäjä,et al.  Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF , 2011 .

[32]  Jingkun Jiang,et al.  Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer , 2012, Proceedings of the National Academy of Sciences.

[33]  A. Minikin,et al.  Atmospheric sub-3 nm particles at high altitudes , 2009 .

[34]  U. Baltensperger,et al.  On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber , 2012 .

[35]  A. Hansel,et al.  High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time , 2010, Journal of the American Society for Mass Spectrometry.

[36]  T. Petäjä,et al.  Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier , 2014 .

[37]  T. Petäjä,et al.  Performance of diethylene glycol-based particle counters in the sub-3 nm size range , 2013 .

[38]  T. Petäjä,et al.  Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules , 2013, Proceedings of the National Academy of Sciences.

[39]  T. Petäjä,et al.  The effect of H 2 SO 4 - amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid , 2011 .

[40]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[41]  D. R. Hanson,et al.  Toward Reconciling Measurements of Atmospherically Relevant Clusters by Chemical Ionization Mass Spectrometry and Mobility Classification/Vapor Condensation , 2015 .

[42]  J. Seinfeld,et al.  Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere , 2013, Nature.

[43]  S. Haider,et al.  Characterisation of organic contaminants in the CLOUD chamber at CERN , 2013 .

[44]  T. Petäjä,et al.  Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry , 2016, Journal of geophysical research. Atmospheres : JGR.

[45]  D. Ceburnis,et al.  Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism , 2009 .

[46]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[47]  J. Mora,et al.  Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides , 2005 .

[48]  J. Seinfeld,et al.  Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles , 2014, Science.

[49]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[50]  I. Riipinen,et al.  Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle size, season, data analysis method and ambient conditions , 2011 .

[51]  D. R. Hanson,et al.  Quantitative and time-resolved nanoparticle composition measurements during new particle formation. , 2013, Faraday discussions.

[52]  I. Riipinen,et al.  Nucleation mode growth rates in Hyytiälä during 2003-2009: variation with particle size, season, data analysis method and ambient conditions , 2011 .

[53]  I. Riipinen,et al.  Evidence for the role of organics in aerosol particle formation under atmospheric conditions , 2010, Proceedings of the National Academy of Sciences.

[54]  Matthew J. McGrath,et al.  Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations , 2011 .

[55]  D. Brus,et al.  Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory , 2016 .

[56]  I. Riipinen,et al.  Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS) , 2009 .