1 IP 3 R 2-independent Ca 2 + release from the endoplasmic reticulum in astrocytes

Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 133-0033, Japan Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo 173-8610, Japan. Department of Physiology, University of California at San Francisco, San Francisco, CA 94143, USA Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan. The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan. Department of Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 133-0033, Japan

[1]  Kenji F. Tanaka,et al.  Aberrant astrocyte Ca2+ signals “AxCa signals” exacerbate pathological alterations in an Alexander disease model , 2018, Glia.

[2]  Andrea Volterra,et al.  Gliotransmission: Beyond Black-and-White , 2018, The Journal of Neuroscience.

[3]  Todd A Fiacco,et al.  Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions , 2018, The Journal of Neuroscience.

[4]  Yusuke Hirabayashi,et al.  ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons , 2017, Science.

[5]  Giovanni Coppola,et al.  Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence , 2017, Neuron.

[6]  Denis Wirtz,et al.  Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes , 2017, Neuron.

[7]  K. Mikoshiba,et al.  Astrocytic IP3Rs: Contribution to Ca2+ signalling and hippocampal LTP , 2017, Glia.

[8]  G. Petzold,et al.  Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model , 2016, The Journal of clinical investigation.

[9]  B. MacVicar,et al.  Ca2+ transients in astrocyte fine processes occur via Ca2+ influx in the adult mouse hippocampus , 2016, Glia.

[10]  M. Iino,et al.  Genetically Encoded Fluorescent Indicators for Organellar Calcium Imaging. , 2016, Biophysical journal.

[11]  E. Shigetomi,et al.  Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. , 2016, The Journal of clinical investigation.

[12]  S. Duan,et al.  Astrocytes contribute to synapse elimination via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP , 2016, eLife.

[13]  H. Hirase,et al.  Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain , 2016, Nature Communications.

[14]  D. Attwell,et al.  Astrocyte calcium signaling: the third wave , 2016, Nature Neuroscience.

[15]  S. Ding,et al.  Disruption of IP₃R2-mediated Ca²⁺ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. , 2015, Cell calcium.

[16]  A. Dunaevsky,et al.  Motor-Skill Learning Is Dependent on Astrocytic Activity , 2015, Neural plasticity.

[17]  Sharmila Venugopal,et al.  Ca2+ signaling in astrocytes from IP3R2−/− mice in brain slices and during startle responses in vivo , 2015, Nature Neuroscience.

[18]  K. McCarthy,et al.  Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior , 2014, Front. Behav. Neurosci..

[19]  K. McCarthy,et al.  Astrocytic Gq-GPCR-Linked IP3R-Dependent Ca2+ Signaling Does Not Mediate Neurovascular Coupling in Mouse Visual Cortex In Vivo , 2014, The Journal of Neuroscience.

[20]  Eduardo D. Martín,et al.  Structural and Functional Plasticity of Astrocyte Processes and Dendritic Spine Interactions , 2014, The Journal of Neuroscience.

[21]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[22]  Ming Xu,et al.  In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca(2+) indicator. , 2014, Cell reports.

[23]  Jin U. Kang,et al.  Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity , 2014, Neuron.

[24]  Masamichi Ohkura,et al.  Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA , 2014, Nature Communications.

[25]  Maiken Nedergaard,et al.  α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. , 2013, Cell calcium.

[26]  Bryan L. Roth,et al.  Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein‐coupled receptor activation in vivo , 2013, The Journal of physiology.

[27]  Vadim Turlapov,et al.  Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication. , 2013, Cell calcium.

[28]  Zhen Chai,et al.  Astrocytic Ca2+ waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia , 2013, Neurobiology of Disease.

[29]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[30]  M. Iino,et al.  Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury , 2013, Proceedings of the National Academy of Sciences.

[31]  Vishnu B. Sridhar,et al.  In vivo Stimulus-Induced Vasodilation Occurs without IP3 Receptor Activation and May Precede Astrocytic Calcium Increase , 2013, The Journal of Neuroscience.

[32]  Xiong Cao,et al.  Astrocyte-derived ATP modulates depressive-like behaviors , 2013, Nature Medicine.

[33]  Martin D. Haustein,et al.  Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses , 2013, The Journal of general physiology.

[34]  Mriganka Sur,et al.  Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes , 2012, Proceedings of the National Academy of Sciences.

[35]  K. Mikoshiba,et al.  Type 2 inositol 1,4,5-trisphosphate receptor is predominantly involved in agonist-induced Ca2+ signaling in Bergmann glia , 2012, Neuroscience Research.

[36]  Takahiro Takano,et al.  Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake , 2012, Proceedings of the National Academy of Sciences.

[37]  T. Takano,et al.  Astrocytes Modulate Neural Network Activity by Ca2+-Dependent Uptake of Extracellular K+ , 2012, Science Signaling.

[38]  Eduardo D. Martín,et al.  Astrocytes Mediate In Vivo Cholinergic-Induced Synaptic Plasticity , 2012, PLoS biology.

[39]  H. Hirase,et al.  Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity In Vivo , 2011, The Journal of Neuroscience.

[40]  Masahiko Watanabe,et al.  Inositol 1,4,5-trisphosphate signaling maintains the activity of glutamate uptake in Bergmann glia , 2010, Neuroscience Research.

[41]  Luca Scorrano,et al.  An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship , 2010, The EMBO journal.

[42]  D. Attwell,et al.  Do astrocytes really exocytose neurotransmitters? , 2010, Nature Reviews Neuroscience.

[43]  B. Barres The Mystery and Magic of Glia: A Perspective on Their Roles in Health and Disease , 2008, Neuron.

[44]  Todd A Fiacco,et al.  Loss of IP3 Receptor-Dependent Ca2+ Increases in Hippocampal Astrocytes Does Not Affect Baseline CA1 Pyramidal Neuron Synaptic Activity , 2008, The Journal of Neuroscience.

[45]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[46]  M. Iino,et al.  Regulation of Neurite Growth by Spontaneous Ca2+ Oscillations in Astrocytes , 2007, The Journal of Neuroscience.

[47]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[48]  J. Russell,et al.  Astrocytes in adult rat brain express type 2 inositol 1,4,5‐trisphosphate receptors , 2002, Glia.

[49]  V. Matyash,et al.  Requirement of functional ryanodine receptor type 3 for astrocyte migration , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[50]  O. Gerasimenko,et al.  Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells , 1999, The Journal of physiology.

[51]  S. Snyder,et al.  Differential cellular expression of isoforms of inositol 1,4,5‐triphosphate receptors in neurons and glia in brain , 1999, The Journal of comparative neurology.

[52]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[53]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[54]  K. Mikoshiba,et al.  Immunohistochemical study of inositol 1,4,5-trisphosphate receptor type 3 in rat central nervous system. , 1995, Neuroreport.

[55]  F. A. Edwards,et al.  A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system , 1989, Pflügers Archiv.

[56]  E R Weibel,et al.  Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions , 1981, Journal of microscopy.

[57]  E. Skinhøj,et al.  Cerebral blood-flow. , 1972 .

[58]  S. Stiens,et al.  Peripheral Neuropathic Pain , 2008 .

[59]  A. Zima,et al.  Endothelin-1–Induced Arrhythmogenic Ca 2 (cid:1) Signaling Is Abolished in Atrial Myocytes of Inositol-1,4,5-Trisphosphate(IP 3 )–Receptor Type 2–Deficient Mice , 2005 .

[60]  R. Rizzuto Microdomains of Intracellular Ca : Molecular Determinants and Functional Consequences , 2005 .

[61]  A. Verkhratsky,et al.  Glial calcium: homeostasis and signaling function. , 1998, Physiological reviews.

[62]  Todd A Fiacco,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S4 Hippocampal Short-and Long-term Plasticity Are Not Modulated by Astrocyte Ca 2+ Signaling , 2022 .