Searching for differentially expressed gene combinations

We propose 'CorScor', a novel approach for identifying gene pairs with joint differential expression. This is defined as a situation with good phenotype discrimination in the bivariate, but not in the two marginal distributions. CorScor can be used to detect phenotype-related dependencies and interactions among genes. Our easily interpretable approach is scalable to current microarray dimensions and yields promising results on several cancer-gene-expression datasets.

[1]  E. Dougherty,et al.  Gene-expression profiles in hereditary breast cancer. , 2001, The New England journal of medicine.

[2]  W. Wong,et al.  Functional annotation and network reconstruction through cross-platform integration of microarray data , 2005, Nature Biotechnology.

[3]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[4]  A. Butte,et al.  Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[6]  Carsten O. Peterson,et al.  Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. , 2001, Cancer research.

[7]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[8]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[9]  Jae K. Lee,et al.  Robust classification modeling on microarray data using misclassification penalized posterior , 2005, ISMB.

[10]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[11]  Lev Klebanov,et al.  Multivariate search for differentially expressed gene combinations , 2004, BMC Bioinformatics.

[12]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[13]  Wei Pan,et al.  A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments , 2002, Bioinform..

[14]  Peter Bühlmann,et al.  Finding predictive gene groups from microarray data , 2004 .

[15]  W. A. Wallis,et al.  Techniques of Statistical Analysis. , 1950 .

[16]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[17]  Tao Li,et al.  A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression , 2004, Bioinform..

[18]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[19]  Sandrine Dudoit,et al.  Classification in microarray experiments , 2003 .

[20]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Marcel Dettling,et al.  BagBoosting for tumor classification with gene expression data , 2004, Bioinform..

[22]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Aniko Szabo,et al.  Multivariate exploratory tools for microarray data analysis. , 2003, Biostatistics.

[24]  A Y Yakovlev,et al.  Variable selection and pattern recognition with gene expression data generated by the microarray technology. , 2002, Mathematical biosciences.

[25]  S. Elledge,et al.  Direct DNA binding by Brca1 , 2001, Proceedings of the National Academy of Sciences of the United States of America.