Universality for generalized Wigner matrices with Bernoulli distribution

The universality for the eigenvalue spacing statistics of generalized Wigner matrices was established in our previous work \cite{EYY} under certain conditions on the probability distributions of the matrix elements. A major class of probability measures excluded in \cite{EYY} are the Bernoulli measures. In this paper, we extend the universality result of \cite{EYY} to include the Bernoulli measures so that the only restrictions on the probability distributions of the matrix elements are the subexponential decay and the normalization condition that the variances in each row sum up to one. The new ingredient is a strong local semicircle law which improves the error estimate on the Stieltjes transform of the empirical measure of the eigenvalues from the order $(N \eta)^{-1/2}$ to $(N \eta)^{-1}$. Here $\eta$ is the imaginary part of the spectral parameter in the definition of the Stieltjes transform and $N$ is the size of the matrix.

[1]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[2]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[3]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[4]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[5]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[6]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[7]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[8]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[9]  Alice Guionnet,et al.  Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .

[10]  Terence Tao,et al.  Random matrices: Localization of the eigenvalues and the necessity of four moments , 2010 .

[11]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[12]  P. Forrester Log-Gases and Random Matrices , 2010 .

[13]  M. Disertori,et al.  Density of States for Random Band Matrices , 2002 .

[14]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[15]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[16]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[17]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[18]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[19]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[20]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[21]  L. Pastur,et al.  Bulk Universality and Related Properties of Hermitian Matrix Models , 2007, 0705.1050.

[22]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[23]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .

[24]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[25]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[26]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[27]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[28]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[29]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[30]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[31]  S. Péché Universality in the bulk of the spectrum for complex sample covariance matrices , 2009, 0912.2493.