Universality for generalized Wigner matrices with Bernoulli distribution
暂无分享,去创建一个
Jun Yin | Horng-Tzer Yau | H. Yau | L. Erdős | L'aszl'o Erdos | J. Yin
[1] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[2] H. Yau,et al. Bulk universality for generalized Wigner matrices , 2010, 1001.3453.
[3] O. Zeitouni,et al. A CLT for a band matrix model , 2004, math/0412040.
[4] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[5] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[6] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[7] K. Johansson. Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.
[8] H. Yau,et al. Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.
[9] Alice Guionnet,et al. Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .
[10] Terence Tao,et al. Random matrices: Localization of the eigenvalues and the necessity of four moments , 2010 .
[11] S. Péché,et al. Bulk universality for Wigner matrices , 2009, 0905.4176.
[12] P. Forrester. Log-Gases and Random Matrices , 2010 .
[13] M. Disertori,et al. Density of States for Random Band Matrices , 2002 .
[14] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[15] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[16] Terence Tao,et al. Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.
[17] P. Deift,et al. Random Matrix Theory: Invariant Ensembles and Universality , 2009 .
[18] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[19] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[20] Jun Yin,et al. The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.
[21] L. Pastur,et al. Bulk Universality and Related Properties of Hermitian Matrix Models , 2007, 0705.1050.
[22] Horng-Tzer Yau,et al. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.
[23] F. T. Wright,et al. A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .
[24] H. Yau,et al. Universality of random matrices and local relaxation flow , 2009, 0907.5605.
[25] S. Péché,et al. Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .
[26] Pavel Bleher,et al. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.
[27] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.
[28] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[29] H. Yau,et al. Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.
[30] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[31] S. Péché. Universality in the bulk of the spectrum for complex sample covariance matrices , 2009, 0912.2493.