Cardinality estimation using collective interference for large-scale RFID systems

Estimating the number (cardinality) of Radio Frequency Identification (RFID) tags is a principal problem for large-scale RFID systems. This paper proposes a novel protocol for RFID cardinality estimation using synchronized response signals. For every estimation round, we need a single time-slot to parse multi-bit information from the synchronized signals that are concurrently transmitted from tags. Our protocol guarantees satisfaction of an arbitrary accuracy requirement within the smallest number of time-slots compared to existing estimation protocols. The efficiency of our protocol is based on two components: tags' synchronization and random number generation from a geometric distribution. We design these components to be feasible without heavy computation or memory overhead, and our protocol can be applied to low-cost and resource-constrained passive RFID tags. We have implemented a proof of concept prototype using software defined radio and programmable RFID tags. By conducting large-scale simulations, we have shown that our protocol outperforms the existing cardinality estimation protocols.

[1]  KatabiDina,et al.  Efficient and reliable low-power backscatter networks , 2012 .

[2]  Mo Li,et al.  Come and Be Served: Parallel Decoding for COTS RFID Tags , 2015, MobiCom.

[3]  Murali S. Kodialam,et al.  Anonymous Tracking Using RFID Tags , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[4]  Murali S. Kodialam,et al.  Fast and reliable estimation schemes in RFID systems , 2006, MobiCom '06.

[5]  Mo Li,et al.  PET: Probabilistic Estimating Tree for Large-Scale RFID Estimation , 2012, IEEE Trans. Mob. Comput..

[6]  Prashant J. Shenoy,et al.  Sherlock: automatically locating objects for humans , 2008, MobiSys '08.

[7]  Roy Want,et al.  An introduction to RFID technology , 2006, IEEE Pervasive Computing.

[8]  Shigang Chen,et al.  Efficient Protocols for Identifying the Missing Tags in a Large RFID System , 2013, IEEE/ACM Transactions on Networking.

[9]  Wei Wang,et al.  Moving tag detection via physical layer analysis for large-scale RFID systems , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[10]  David Garlan,et al.  Project Aura: Toward Distraction-Free Pervasive Computing , 2002, IEEE Pervasive Comput..

[11]  Piotr Indyk,et al.  Efficient and reliable low-power backscatter networks , 2012, CCRV.

[12]  Jie Wu,et al.  RFID Estimation With Blocker Tags , 2017, IEEE/ACM Transactions on Networking.

[13]  Mo Li,et al.  ZOE: Fast cardinality estimation for large-scale RFID systems , 2013, 2013 Proceedings IEEE INFOCOM.

[14]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[15]  Jie Wu,et al.  Fast Tracking the Population of Key Tags in Large-Scale Anonymous RFID Systems , 2017, IEEE/ACM Transactions on Networking.

[16]  Pan Hu,et al.  Laissez-Faire: Fully Asymmetric Backscatter Communication , 2015, SIGCOMM.

[17]  Kwan-Wu Chin,et al.  A Survey and Tutorial of RFID Anti-Collision Protocols , 2010, IEEE Communications Surveys & Tutorials.

[18]  Bo Sheng,et al.  Finding popular categories for RFID tags , 2008, MobiHoc '08.

[19]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[20]  Mo Li,et al.  PLACE: Physical layer cardinality estimation for large-scale RFID systems , 2015, INFOCOM.

[21]  Yunhao Liu,et al.  Cardinality Estimation for Large-Scale RFID Systems , 2011, IEEE Trans. Parallel Distributed Syst..

[22]  Ivan Marsic,et al.  Passive RFID for Object and Use Detection during Trauma Resuscitation , 2016, IEEE Transactions on Mobile Computing.

[23]  Roy Want,et al.  RFID Technology and Applications , 2006, IEEE Pervasive Computing.

[24]  Andreas Terzis,et al.  Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless , 2010, SenSys '10.

[25]  Lothar Thiele,et al.  Efficient network flooding and time synchronization with Glossy , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[26]  Philippe Flajolet,et al.  Loglog Counting of Large Cardinalities (Extended Abstract) , 2003, ESA.

[27]  Bo Sheng,et al.  Counting RFID Tags Efficiently and Anonymously , 2010, 2010 Proceedings IEEE INFOCOM.

[28]  Edwin C. Kan,et al.  3D real-time indoor localization via broadband nonlinear backscatter in passive devices with centimeter precision , 2016, MobiCom.

[29]  Alex X. Liu,et al.  Every bit counts: fast and scalable RFID estimation , 2012, Mobicom '12.

[30]  Feng Zhou,et al.  Evaluating and optimizing power consumption of anti-collision protocols for applications in RFID systems , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[31]  Jie Wu,et al.  Multi-Category RFID Estimation , 2017, IEEE/ACM Transactions on Networking.

[32]  Chae-Woo Lee,et al.  An enhanced dynamic framed slotted ALOHA algorithm for RFID tag identification , 2005, The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services.