The smooth variable structure filter: A comprehensive review

Abstract The smooth variable structure filter (SVSF) is a type of sliding mode filter formulated in a predictor-corrector format and has seen significant development over the last 15 years. In this paper, we provide a comprehensive review of the SVSF and its variants. The developments, applications and improvements of the SVSF in terms of robustness and optimality are investigated. In addition, the combination of the SVSF with different filtering strategies is considered in an effort to improve estimation accuracy while maintaining robustness to model uncertainty. State estimation techniques such as the unscented and cubature Kalman filters (UKF & CKF), SVSF, the combination of SVSF with UKF (UK-SVSF), and the combination of CKF with SVSF (CK-SVSF) are applied on a 4-DOF industrial robotic arm. The SVSF state estimation performance is examined under different operating conditions. The results of these filters have been compared based a number of statistics such as the root mean squared error (RMSE) and mean absolute error (MAE), among others. It is shown that the UK-SVSF and CK-SVSF strategies acquire the best performance in the presence of uncertainties.

[1]  Ala A. Hussein,et al.  Enhancement in Li-Ion Battery Cell State-of-Charge Estimation Under Uncertain Model Statistics , 2016, IEEE Transactions on Vehicular Technology.

[2]  M. Al-Shabi Sigma-point Smooth Variable Structure Filters applications into robotic arm , 2017, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).

[3]  Mamoun F. Abdel-Hafez,et al.  A multi-hypothesis sequential probability test for partial discharges localization in power transformers , 2015, 2015 10th International Symposium on Mechatronics and its Applications (ISMA).

[4]  S. Andrew Gadsden,et al.  A fuzzy-smooth variable structure filtering strategy: For state and parameter estimation , 2013, 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT).

[5]  Mamoun F. Abdel-Hafez,et al.  Estimating Vehicle State by GPS/IMU Fusion with Vehicle Dynamics , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[6]  M. Al-Shabi,et al.  New novel time-varying and robust smoothing boundary layer width for the smooth variable structure filter , 2013, 2013 9th International Symposium on Mechatronics and its Applications (ISMA).

[7]  Saeid Habibi,et al.  Robust fault diagnosis of an electro-hydrostatic actuator using the Novel dynamic second-order SVSF and IMM strategy , 2014 .

[8]  Reza Langari,et al.  A hybrid intelligent system for fault detection and sensor fusion , 2009, Appl. Soft Comput..

[9]  Jinho Kim,et al.  A Variable Structure-Based Estimation Strategy Applied to an RRR Robot System , 2017, J. Robotics Netw. Artif. Life.

[10]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[11]  Li Fu,et al.  A new SINS/GPS sensor fusion scheme for UAV localization problem using nonlinear SVSF with covariance derivation and an adaptive boundary layer , 2016 .

[12]  Saeid Habibi,et al.  Iterative Smooth Variable Structure Filter for Parameter Estimation , 2011 .

[13]  S. A. Gadsden,et al.  Development of a sliding mode controller and higher-order structure-based estimator , 2016, 2016 IEEE Transportation Electrification Conference and Expo (ITEC).

[14]  S. A. Gadsden,et al.  The cubature smooth variable structure filter estimation strategy applied to a quadrotor controller , 2015, Defense + Security Symposium.

[15]  Tapan Kumar Saha,et al.  Hybrid method on signal de-noising and representation for online partial discharge monitoring of power transformers at substations , 2015 .

[16]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[17]  S. Andrew Gadsden,et al.  Advances of the smooth variable structure filter: square-root and two-pass formulations , 2017 .

[18]  Mamoun F. Abdel-Hafez,et al.  Improved Battery SOC Estimation Accuracy Using a Modified UKF With an Adaptive Cell Model Under Real EV Operating Conditions , 2018, IEEE Transactions on Transportation Electrification.

[19]  S. Andrew Gadsden,et al.  A new form of the smooth variable structure filter with a covariance derivation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[20]  Isaac Cohen,et al.  Target tracking with incomplete detection , 2009, Comput. Vis. Image Underst..

[21]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[22]  S. Andrew Gadsden,et al.  Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy , 2014, Signal Process..

[23]  Mamoun F. Abdel-Hafez,et al.  Constrained low-cost GPS/INS filter with encoder bias estimation for ground vehicles׳ applications , 2015 .

[24]  Abdelkrim Nemra,et al.  Robust SVSF-SLAM for Unmanned Vehicle in Unknown Environment , 2016 .

[25]  Ryan Ahmed,et al.  Offline Parameter Identification and SOC Estimation for New and Aged Electric Vehicles Batteries , 2019, 2019 IEEE Transportation Electrification Conference and Expo (ITEC).

[26]  Sarah K. Spurgeon,et al.  Sliding mode observers: a survey , 2008, Int. J. Syst. Sci..

[27]  T. Kirubarajan,et al.  Two-pass smoother based on the SVSF estimation strategy , 2015, Defense + Security Symposium.

[28]  Jimi Tjong,et al.  Automotive Internal-Combustion-Engine Fault Detection and Classification Using Artificial Neural Network Techniques , 2015, IEEE Transactions on Vehicular Technology.

[29]  Khaled S. Hatamleh,et al.  The Unscented Smooth Variable Structure Filter Application Into a Robotic Arm , 2014 .

[30]  Christopher Edwards,et al.  Sliding mode observers for reconstruction of simultaneous actuator and sensor faults , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[31]  Zhang Changfan,et al.  Design of sliding mode observer for uncertain nonlinear systems , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[32]  Christopher Edwards,et al.  A comparison of sliding mode and unknown input observers for fault reconstruction , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[33]  Mamoun F. Abdel-Hafez,et al.  Non-Linear Autoregressive Delay-Dependent INS/GPS Navigation System Using Neural Networks , 2017, IEEE Sensors Journal.

[34]  S. Andrew Gadsden,et al.  Gaussian filters for parameter and state estimation: A general review of theory and recent trends , 2017, Signal Process..

[35]  Saeid Habibi,et al.  State Estimation and Fault Detection of an Electrohydrostatic Actuator , 2014 .

[36]  Jimi Tjong,et al.  Artificial neural network training utilizing the smooth variable structure filter estimation strategy , 2016, Neural Computing and Applications.

[37]  Khaled Bashir Shaban,et al.  Wavelet Transform With Histogram-Based Threshold Estimation for Online Partial Discharge Signal Denoising , 2015, IEEE Transactions on Instrumentation and Measurement.

[38]  Kai Guo,et al.  A novel robust filtering strategy for systems with Non-Gaussian noises , 2018 .

[39]  Hong Gu,et al.  Partitioned time-varying smooth variable structure filter for airport target tracking , 2016, 2016 CIE International Conference on Radar (RADAR).

[40]  Mohammad A. Jaradat,et al.  Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS , 2013 .

[41]  Mamoun F. Abdel-Hafez,et al.  Enhanced, Delay Dependent, Intelligent Fusion for INS/GPS Navigation System , 2014, IEEE Sensors Journal.

[42]  Ayman H. El-Hag,et al.  Toward High-Accuracy Estimation of Partial Discharge Location , 2016, IEEE Transactions on Instrumentation and Measurement.

[43]  Robert E. Shannon,et al.  Minimum mean-squared-error estimators for simulation experiments , 1981, CACM.

[44]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[45]  Lu Cao,et al.  Predictive Smooth Variable Structure Filter for Attitude Synchronization Estimation During Satellite Formation Flying , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[46]  Ayman H. El-Hag,et al.  A Novel Bias Detection Technique for Partial Discharge Localization in Oil Insulation System , 2016, IEEE Transactions on Instrumentation and Measurement.

[47]  Saeid Habibi,et al.  The Extended Variable Structure Filter , 2006 .

[48]  Mustapha Hamerlain,et al.  Robust SVSF-SLAM Algorithm for Unmanned Vehicle in Dynamic Environment , 2018, 2018 International Conference on Signal, Image, Vision and their Applications (SIVA).

[49]  Thia Kirubarajan,et al.  Development of a variable structure-based fault detection and diagnosis strategy applied to an electromechanical system , 2017, Defense + Security.

[50]  V. Utkin Variable structure systems with sliding modes , 1977 .

[51]  G. Husseini,et al.  Modeling and Bias-Robust Estimation of the Acoustic Release of Chemotherapeutics from Liposomes. , 2019, Journal of biomedical nanotechnology.

[52]  Roberta Veloso Garcia,et al.  Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman Filter and Extended Kalman Filter , 2018, Advances in Space Research.

[53]  S. Andrew Gadsden,et al.  A Multi-Target Tracking Formulation of SVSF With the Joint Probabilistic Data Association Technique , 2014 .

[54]  Samir Ziada,et al.  Estimation theory and Neural Networks revisited: REKF and RSVSF as optimization techniques for Deep-Learning , 2018, Neural Networks.

[55]  S. Andrew Gadsden,et al.  Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter , 2013, Signal Process..

[56]  Saeid R. Habibi,et al.  An SVSF-Based Generalized Robust Strategy for Target Tracking in Clutter , 2016, IEEE Transactions on Intelligent Transportation Systems.

[57]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[58]  Saeid Habibi,et al.  Li-Ion Battery SOC Estimation Using Non-Linear Estimation Strategies Based on Equivalent Circuit Models , 2014 .

[59]  Saeid Habibi,et al.  Parameter Estimation Using a Combined Variable Structure and Kalman Filtering Approach , 2008 .

[60]  Mamoun F. Abdel-Hafez,et al.  A Hybrid Estimation-Based Technique for Partial Discharge Localization , 2020, IEEE Transactions on Instrumentation and Measurement.

[61]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[62]  Ghaleb A. Husseini,et al.  Identification of the Uncertainty Structure to Estimate the Acoustic Release of Chemotherapeutics From Polymeric Micelles , 2017, IEEE Transactions on NanoBioscience.

[63]  James B. Rawlings,et al.  Identifying the uncertainty structure using maximum likelihood estimation , 2015, 2015 American Control Conference (ACC).

[64]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[65]  Mustapha Hamerlain,et al.  An Adaptive SVSF-SLAM Algorithm in Dynamic Environment for Cooperative Unmanned Vehicles , 2019 .

[66]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[67]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[68]  Mamoun F. Abdel-Hafez,et al.  The Autocovariance Least-Squares Technique for GPS Measurement Noise Estimation , 2010, IEEE Transactions on Vehicular Technology.

[69]  L. L. Cam,et al.  Maximum likelihood : an introduction , 1990 .

[70]  S. Żak,et al.  Observation of dynamical systems in the presence of bounded nonlinearities/uncertainties , 1986, 1986 25th IEEE Conference on Decision and Control.

[71]  P. J. Escamilla-Ambrosio,et al.  Hybrid Kalman filter-fuzzy logic adaptive multisensor data fusion architectures , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[72]  Wonkeun Youn,et al.  Combined Quaternion-Based Error State Kalman Filtering and Smooth Variable Structure Filtering for Robust Attitude Estimation , 2019, IEEE Access.

[73]  Saeid Habibi,et al.  A New Robust Filtering Strategy for Linear Systems , 2012 .

[74]  S. Habibi,et al.  The Variable Structure Filter , 2003 .

[75]  M. Al-Shabi,et al.  Novel Filters Based Operational Scheme for Five-Level Diode-Clamped Inverters in Microgrid , 2020, Frontiers in Energy Research.

[76]  Mohammad A. Jaradat,et al.  Optimization of intelligent-based approach for low-cost INS/GPS navigation system , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[77]  S. Andrew Gadsden,et al.  Derivation of an optimal boundary layer width for the smooth variable structure filter , 2011, Proceedings of the 2011 American Control Conference.

[78]  Ratnasingham Tharmarasa,et al.  Application of the smooth variable structure filter to a multi-target tracking problem , 2011, Defense + Commercial Sensing.

[79]  T. Kirubarajan,et al.  Square-root formulation of the SVSF with applications to nonlinear target tracking problems , 2015, Defense + Security Symposium.

[80]  Hamed Hossein Afshari,et al.  A Review of Smooth Variable Structure Filters: Recent Advances in Theory and Applications , 2015 .

[81]  Mustapha Hamerlain,et al.  SLAM based on Adaptive SVSF for Cooperative Unmanned Vehicles in Dynamic environment , 2019 .

[82]  Mustapha Hamerlain,et al.  SLAM Problem for Autonomous Underwater Vehicle using SVSF Filter , 2018, 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP).

[83]  John L. Crassidis,et al.  Predictive Filtering for Nonlinear Systems , 1996 .

[84]  Saeid Habibi,et al.  Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies , 2017 .

[85]  Mamoun F. Abdel-Hafez On the GPS/IMU sensors' noise estimation for enhanced navigation integrity , 2012, Math. Comput. Simul..

[86]  Saeid Habibi,et al.  Reliable state of charge and state of health estimation using the smooth variable structure filter , 2018, Control Engineering Practice.

[87]  Yang Liu,et al.  A FastSLAM Based on the Smooth Variable Structure Filter for UAVs , 2018, 2018 15th International Conference on Ubiquitous Robots (UR).

[88]  M. Farooq,et al.  Maximum likelihood track formation with the Viterbi algorithm , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[89]  Saeid Habibi,et al.  Comparison of extended and unscented Kalman, particle, and smooth variable structure filters on a bearing-only target tracking problem , 2009, Optical Engineering + Applications.

[90]  Saeid Habibi,et al.  The Smooth Variable Structure Filter , 2007, Proceedings of the IEEE.

[91]  Allam Ahmed,et al.  Smooth Variable Structure Filter VSLAM , 2016 .

[92]  Khaled S. Hatamleh,et al.  Robust nonlinear control and estimation of a Prrr robot System , 2019, Int. J. Robotics Autom..

[93]  Shuai Chen,et al.  Application of the 2nd-order Smooth Variable Structure Filter algorithm for SINS initial alignment , 2017, 2017 Forum on Cooperative Positioning and Service (CPGPS).

[94]  Mamoun F. Abdel-Hafez,et al.  Detection of Bias in GPS Satellites' Measurements: A Probability Ratio Test Formulation , 2014, IEEE Transactions on Control Systems Technology.

[95]  Jason L. Speyer,et al.  GPS Measurement Noise Estimation in Non-Ideal Environments , 2008 .

[96]  Gang Li,et al.  Modified Smooth Variable Structure Filter for Radar Target Tracking , 2019, 2019 International Radar Conference (RADAR).

[97]  Thia Kirubarajan,et al.  Kalman and smooth variable structure filters for robust estimation , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[98]  James B. Rawlings,et al.  A new autocovariance least-squares method for estimating noise covariances , 2006, Autom..

[99]  A. Elnady,et al.  Recursive Smooth Variable Structure Filter for Estimation Processes in Direct Power Control Scheme Under Balanced and Unbalanced Power Grid , 2020, IEEE Systems Journal.

[100]  S. Andrew Gadsden,et al.  A nonlinear second-order filtering strategy for state estimation of uncertain systems , 2019, Signal Process..