An energy–momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells

Summary In this paper, a mixed variational formulation for the development of energy–momentum consistent (EMC) time-stepping schemes is proposed. The approach accommodates mixed finite elements based on a Hu–Washizu-type variational formulation in terms of displacements, Green–Lagrangian strains, and conjugated stresses. The proposed discretization in time of the mixed variational formulation under consideration yields an EMC scheme in a natural way. The newly developed methodology is applied to a high-performance mixed shell finite element. The previously observed robustness of the mixed finite element formulation in equilibrium iterations extends to the transient regime because of the EMC discretization in time. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  O. Bauchau,et al.  An Energy Decaying Scheme for Nonlinear Dynamics of Shells , 2002 .

[2]  J. C. Simo,et al.  A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .

[3]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[4]  U. Galvanetto,et al.  AN ENERGY‐CONSERVING CO‐ROTATIONAL PROCEDURE FOR THE DYNAMICS OF PLANAR BEAM STRUCTURES , 1996 .

[5]  Ignacio Romero,et al.  Numerical integration of the stiff dynamics of geometrically exact shells: an energy‐dissipative momentum‐conserving scheme , 2002 .

[6]  P. Betsch,et al.  Constrained dynamics of geometrically exact beams , 2003 .

[7]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[8]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[9]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[10]  Ekkehard Ramm,et al.  Time integration in the context of energy control and locking free finite elements , 2000 .

[11]  Wojciech Witkowski,et al.  Discrepancies of energy values in dynamics of three intersecting plates , 2010 .

[12]  P. Betsch,et al.  Frame‐indifferent beam finite elements based upon the geometrically exact beam theory , 2002 .

[13]  Ignacio Romero,et al.  Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods , 2003 .

[14]  Mohammed Hjiaj,et al.  An energy‐momentum method for in‐plane geometrically exact Euler–Bernoulli beam dynamics , 2015 .

[15]  Peter Betsch,et al.  The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics , 2008 .

[16]  Ignacio Romero,et al.  An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics , 2002 .

[17]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[18]  Alberto Cardona,et al.  A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics , 2008 .

[19]  Olivier A. Bauchau,et al.  On the Modeling of Shells in Multibody Dynamics , 2000 .

[20]  Werner Wagner,et al.  A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .

[21]  S. Leyendecker,et al.  Objective energy-momentum conserving integration for the constrained dynamics of geometrically exact beams , 2006 .

[22]  Peter Betsch,et al.  On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics , 2009 .

[23]  Christian Miehe,et al.  Energy and momentum conserving elastodynamics of a non‐linear brick‐type mixed finite shell element , 2001 .

[24]  Boštjan Brank,et al.  Dynamics and time-stepping schemes for elastic shells undergoing finite rotations , 2003 .

[25]  Francisco Armero,et al.  Assumed strain finite element methods for conserving temporal integrations in non‐linear solid dynamics , 2008 .

[26]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[27]  Ignacio Romero,et al.  An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics , 2012 .

[28]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non‐linear dynamics , 1992 .

[29]  E. Stein,et al.  On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells , 1998 .

[30]  M. A. Crisfield,et al.  An energy‐conserving co‐rotational procedure for the dynamics of shell structures , 1998 .