Low power high-performance computingon the Beagleboard platform

The ever increasing energy requirements of supercomputers and server farms is driving the scientific and industrial communities to take in deeper consideration the energy efficiency of computing equipments. This contribution addresses the issue proposing a cluster of ARM processors for high performance computing. The cluster is composed of five BeagleBoard-xM, with one board managing the cluster, and the other boards executing the actual processing. The software platform is based on the Angstrom GNU/Linux distribution and is equipped with a distributed file system to ease sharing data and code among the nodes of the cluster, and with tools for managing tasks and monitoring the status of each node. The computational capabilities of the cluster have been assessed through High-Performance Linpack and a cluster-wide speaker diarization algorithm, while power consumption has been measured using a clamp meter. Experimental results obtained in the speaker diarization task showed that the energy efficiency of the BeagleBoard-xM cluster is comparable to the one of a laptop computer equipped with a Intel Core2 Duo T8300 running at 2.4 GHz. Furthermore, removing the bottleneck due to the Ethernet interface, the BeagleBoard-xM cluster is able to achieve a superior energy efficiency.