Seven years of global retrieval of cloud properties using space-borne data of GOME

Abstract. We present a global and regional multi-annual (June 1996–May 2003) analysis of cloud properties (spherical cloud albedo – CA, cloud optical thickness – COT and cloud top height – CTH) of optically thick (COT > 5) clouds, derived using measurements from the GOME instrument on board the ESA ERS-2 space platform. We focus on cloud top height, which is obtained from top-of-atmosphere backscattered solar light measurements in the O2 A-band using the Semi-Analytical CloUd Retrieval Algorithm SACURA. The physical framework relies on the asymptotic equations of radiative transfer. The dataset has been validated against independent ground- and satellite-based retrievals and is aimed to support trace-gases retrievals as well as to create a robust long-term climatology together with SCIAMACHY and GOME-2 ensuing retrievals. We observed the El Nino-Southern Oscillation anomaly in the 1997–1998 record through CTH values over the Pacific Ocean. The global average CTH as derived from GOME is 5.6 ± 3.2 km, for a corresponding average COT of 19.1 ± 13.9.

[1]  W. Rossow,et al.  Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP , 1993 .

[2]  Heinrich Bovensmann,et al.  SCIAMACHY - Exploring the Changing Earth's Atmosphere , 2011 .

[3]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[4]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[5]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[6]  Eleonora P. Zege,et al.  A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region , 2003 .

[7]  D. Jackson,et al.  Trends in Global Cloud Cover in Two Decades of HIRS Observations , 2005 .

[8]  S. Bony,et al.  Sea Surface Temperature and Large-Scale Circulation Influences on Tropical Greenhouse Effect and Cloud Radiative Forcing , 1997 .

[9]  B. Wielicki,et al.  Cloud structure anomalies over the tropical Pacific during the 1997/98 El Niño , 2001 .

[10]  J. Hovenier,et al.  A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment , 2001 .

[11]  Michael Buchwitz,et al.  Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach , 2004 .

[12]  S. Gassó Satellite observations of the impact of weak volcanic activity on marine clouds , 2008 .

[13]  D. Wark,et al.  On Cloud-Top Determination from Gemini-5. , 1967 .

[14]  Alexander Marshak,et al.  The verisimilitude of the independent pixel approximation used in cloud remote sensing , 1995 .

[15]  M. Dubey,et al.  Satellite remote sensing of aerosols generated by the Island of Nauru , 2006 .

[16]  D. Hartmann,et al.  Interactions among Cloud, Water Vapor, Radiation, and Large-Scale Circulation in the Tropical Climate. Part I: Sensitivity to Uniform Sea Surface Temperature Changes , 2003 .

[17]  Robert F. Cahalan,et al.  The Plane-parallel Albedo Bias of Liquid Clouds from MODIS Observations , 2007 .

[18]  D. Wark,et al.  Discussion of the letter by R. A. Hanel, “Determination of cloud altitude from a satellite” , 1961 .

[19]  Edgard G. Yanovitskij Light scattering in inhomogeneous atmospheres , 1997 .

[20]  P. Bhartia,et al.  Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals , 2011 .

[21]  Peter Builtjes,et al.  Retrieval methods of effective cloud cover from the GOME instrument: an intercomparison , 2002 .

[22]  Vladimir V. Rozanov,et al.  Global cloud top height and thermodynamic phase distributions as obtained by SCIAMACHY on ENVISAT , 2007 .

[23]  M. King Determination of the Scaled Optical Thickness of Clouds from Reflected Solar Radiation Measurements , 1987 .

[24]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[25]  Diego G. Loyola,et al.  Cloud Properties Derived From GOME/ERS-2 Backscatter Data for Trace Gas Retrieval , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Zhanqing Li,et al.  A Near-Global Climatology of Single-Layer and Overlapped Clouds and Their Optical Properties Retrieved from Terra/MODIS Data Using a New Algorithm , 2005, Journal of Climate.

[27]  Makoto Kuji,et al.  Retrieval of cloud geometrical parameters using remote sensing data , 2001, SPIE Asia-Pacific Remote Sensing.

[28]  John P. Burrows,et al.  The Intercomparison of Cloud Parameters Derived Using Multiple Satellite Instruments , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[29]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Piet Stammes,et al.  Click Here for Full Article , 1989 .

[31]  Andrew K. Heidinger,et al.  The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) Climate Dataset: A Resource for Climate Research , 2003 .

[32]  M. V. Roozendael,et al.  FRESCO+: an improved O 2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals , 2008 .

[33]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[34]  John P. Burrows,et al.  Global Distribution of Cloud Top Height as Retrieved from SCIAMACHY Onboard ENVISAT Spaceborne Observations , 2011, Remote. Sens..

[35]  A. Kokhanovsky,et al.  The physical parameterization of the top-of-atmosphere reflection function for a cloudy atmosphere—underlying surface system: the oxygen A-band case study , 2004 .

[36]  J. Fischer,et al.  Detection of Cloud-Top Height from Backscattered Radiances within the Oxygen A Band. Part 1: Theoretical Study. , 1991 .

[37]  John P. Burrows,et al.  Intercomparison of cloud top altitudes as derived using GOME and ATSR-2 instruments onboard ERS-2 , 2006 .

[38]  Steven Platnick,et al.  Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques , 2011 .

[39]  Retrieval of cloud spherical albedo from top-of-atmosphere reflectance measurements performed at a single observation angle , 2006 .

[40]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[41]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[42]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[43]  W. Collins,et al.  Investigation of Regional and Seasonal Variations in Marine Boundary Layer Cloud Properties from MODIS Observations , 2008 .

[44]  Michael E. Schlesinger,et al.  Analysis of global cloudiness: 2. Comparison of ground‐based and satellite‐based cloud climatologies , 1994 .

[45]  Claudia J. Stubenrauch,et al.  Cloud Properties and Their Seasonal and Diurnal Variability from TOVS Path-B , 2006 .

[46]  Anthony B. Davis,et al.  Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL , 2010 .

[47]  R. Pincus,et al.  Uncertainty in Cloud Optical Depth Estimates Made from Satellite Radiance Measurements. , 1995 .

[48]  Philip Watts,et al.  Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment , 2010 .

[49]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[50]  M. Buchwitz,et al.  A correlated‐k distribution scheme for overlapping gases suitable for retrieval of atmospheric constituents from moderate resolution radiance measurements in the visible/near‐infrared spectral region , 2000 .

[51]  B. Lawrence,et al.  Validation of the GRAPE single view aerosol retrieval for ATSR-2 and insights into the long term global AOD trend , 2009 .

[52]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[53]  Yakov A. Pachepsky,et al.  Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms , 2006 .

[54]  W. Paul Menzel,et al.  MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results , 2008 .

[55]  Claudia J. Stubenrauch,et al.  A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat , 2010 .

[56]  Robert J. D. Spurr,et al.  Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations , 2008 .

[57]  Akihiko Kuze,et al.  Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands , 1994 .

[58]  Vladimir V. Rozanov,et al.  The determination of cloud altitudes using GOME reflectance spectra: multilayered cloud systems , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[60]  Jörg Bendix,et al.  The intercomparison of selected cloud retrieval algorithms , 2005 .

[61]  G. Burgers,et al.  Fluid dynamics of El Nino variability , 2002 .

[62]  RADIATIVE TRANSFER IN THE OXYGEN A-BAND AND ITS APPLICATION TO CLOUD REMOTE SENSING , 2011 .

[63]  E. Fetzer,et al.  Scale-by-scale analysis of probability distributions for global MODIS-AQUA cloud properties: how the large scale signature of turbulence may impact statistical analyses of clouds , 2010 .

[64]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[65]  Diego G. Loyola,et al.  Automatic cloud analysis from polar-orbiting satellites using neural network and data fusion techniques , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[66]  Bryan Lawrence,et al.  Validation of the GRAPE single view aerosol retrieval for ATSR-2 and insights into the long term global AOD trend over the ocean , 2010 .

[67]  Bryan N. Lawrence,et al.  Regional and seasonal variations of the Twomey indirect effect as observed by the ATSR‐2 satellite instrument , 2008 .

[68]  Steffen Beirle,et al.  El Niño induced anomalies in global data sets of total column precipitable water and cloud cover derived from GOME on ERS‐2 , 2005 .

[69]  D. Diner,et al.  MISR: A multiangle imaging spectroradiometer for geophysical and climatological research from Eos , 1989 .

[70]  Steffen Beirle,et al.  Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature , 2008 .

[71]  U. Schumann,et al.  The influence of broken cloudiness on cloud top height retrievals using nadir observations of backscattered solar radiation in the oxygen A-band , 2007 .

[72]  Richard Siddans,et al.  Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR , 2011 .

[73]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[74]  Adrian Doicu,et al.  Sixteen years of GOME/ERS‐2 total ozone data: The new direct‐fitting GOME Data Processor (GDP) version 5—Algorithm description , 2012 .

[75]  A. Kokhanovsky,et al.  Reflection and transmission of solar light by clouds: asymptotic theory , 2006 .

[76]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[77]  Jan-Peter Muller,et al.  Operational retrieval of cloud-top heights using MISR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[78]  J. Burrows,et al.  The remote sensing of tropospheric composition from space , 2011 .

[79]  Patrick Minnis,et al.  Underestimation of deep convective cloud tops by thermal imagery , 2004 .

[80]  A. Kokhanovsky,et al.  Semianalytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top‐of‐atmosphere reflectance measurements in the oxygen A band , 2004 .

[81]  Igor I. Mokhov,et al.  Analysis of global cloudiness: 1. Comparison of Meteor, Nimbus 7, and International Satellite Cloud Climatology Project (ISCCP) satellite data , 1993 .

[82]  B. Mayer,et al.  Global patterns in daytime cloud properties derived from GOME backscatter UV-VIS measurements , 2010 .

[83]  Sally A. McFarlane,et al.  Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites , 1999 .

[84]  Michael Buchwitz,et al.  The Global Ozone Monitoring Experiment (Gome) : Mission, instrument concept, and first scientific results , 1997 .

[85]  Thomas Ruppert,et al.  A new PMD cloud-recognition algorithm for GOME , 1998 .

[86]  Ernst Strüngmann Forum,et al.  Clouds in the perturbed climate system : their relationship to energy balance, atmospheric dynamics, and precipitation , 2009 .