Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data

We discuss the application of Kalman filtering techniques to the analysis of very long baseline interferometry (VLBI) data. The VLBI observables are geometrically related to the geodetic and astrometric parameters which can be determined from them. However, contributions to the observables from the clocks at, and the atmospheres above, the VLBI sites must be accounted for if reliable estimates of geodetic and astrometric parameters are to be obtained. Here an implementation of a Kaiman filter to account for stochastic behavior on those parameters which vary during the course of a VLBI experiment is discussed. Both the nature of the stochastic processes which should be used in the model for the VLBI data and the implementation of the Kaiman filter estimator are considered. From the results obtained, we conclude that the Kaiman filter is appropriate for analyzing VLBI data. The choice of stochastic model does not unduly affect the estimates of the geodetic parameters and the quality of these estimates is higher than that for conventional weighted least squares estimators.

[1]  J. B. Thomas,et al.  Radio interferometric determination of intercontinental baselines and Earth orientation Utilizing deep space network antennas: 1971 to 1980 , 1984 .

[2]  Alan Robert Whitney Precision geodesy and astrometry via very-long-baseline interferometry. , 1974 .

[3]  D. Robertson,et al.  Geodetic radio interferometric surveying: Applications and results , 1985 .

[4]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[5]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[6]  L. J. Rueger,et al.  The performance of NASA research hydrogen masers , 1980 .

[7]  Ronald L. Walsworth,et al.  Present clock stability and realistic prospects for the future. , 1986 .

[8]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[9]  J. M. Davidson,et al.  Mobile Very Long Baseline Interferometry and Global Positioning System measurement of vertical crustal motion , 1986 .

[10]  Thomas A. Herring,et al.  Erratum: Correction to ``Geodesy by Radio Interferometry: Studies of the forced nutations of the Earth, 1, Data Analysis'' , 1986 .

[11]  Thomas A. Herring,et al.  Precision and Accuracy of Intercontinental Distance Determinations Using Radio Interferometry. , 1983 .

[12]  R. Sydnor,et al.  Hydrogen Maser Frequency Standard , 1971 .

[13]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[14]  T. Herring Precision of vertical position estimates from very long baseline interferometry , 1986 .

[15]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[16]  Robert N. Treuhaft,et al.  The effect of the dynamic wet troposphere on radio interferometric measurements , 1987 .

[17]  C C Counselman,et al.  Very-Long-Baseline Radio Interferometry: The Mark III System for Geodesy, Astrometry, and Aperture Synthesis , 1983, Science.

[18]  Gerald J. Bierman,et al.  Numerical comparison of kalman filter algorithms: Orbit determination case study , 1977, Autom..

[19]  I. Shapiro,et al.  "Correction [to “Geodesy by radio interferometry: Studies of the forced nutations of the Earth, 1. Data analysis” by T. A. Herring, C. R. Gwinn and I. I. Shapiro]"" , 1986 .

[20]  James L. Davis,et al.  Effects of atmospheric modeling errors on determinations of baseline vectors from very long baseline interferometry , 1991 .

[21]  I. Shapiro,et al.  Geodesy by radio interferometry: Determinations of baseline vector, Earth rotation, and solid earth tide parameters with the Mark I Very Long Baseline Radio Interferometry System , 1986 .

[22]  P. B. Liebelt An Introduction To Optimal Estimation , 1967 .

[23]  F. D. Lewis,et al.  Frequency and Time Standards , 1955, Proceedings of the IRE.

[24]  J. M. Davidson,et al.  Tectonic motion in the western United States inferred from Very Long Baseline Interferometry measurements, 1980–1986 , 1987 .

[25]  R. Vessot,et al.  5.4. Frequency and Time Standards , 1976 .

[26]  C. S. Gardner Correction of laser tracking data for the effects of horizontal refractivity gradients. , 1977, Applied optics.

[27]  Alan Whitney,et al.  Precision Geodesy Using the Mark-III Very-Long-Baseline Interferometer System , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[28]  W. E. Himwich,et al.  Determination of relative site motions in the western United States using Mark III Very Long Baseline Interferometry , 1987 .

[29]  Thomas A. Clark,et al.  Radio-source positions from VLBI , 1986 .

[30]  I. Shapiro,et al.  Geodesy by radio interferometry: Evidence for contemporary plate motion , 1986 .