Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example

To shed light on the mechanism responsible for the weak ferromagnetism in undoped wide band gap oxides, we carry out a comparative study on ZnO thin films prepared using both sol-gel and molecular beam epitaxy (MBE) methods. Compared with the MBE samples, the sol-gel derived samples show much stronger room temperature ferromagnetism with a magnetic signal persisting up to ∼740 K, and this ferromagnetic order coexists with a high density of defects in the form of zinc vacancies. The donor-acceptor pairs associated with the zinc vacancies also cause a characteristic orange-red photoluminescence in the sol-gel films. Furthermore, the strong correlation between the ferromagnetism and the zinc vacancies is confirmed by our first-principles density functional theory calculations, and electronic band alteration as a result of defect engineering is proposed to play the critical role in stabilizing the long-range ferromagnetism.

[1]  B. Yao,et al.  Tuning ferromagnetism in MgxZn1−xO thin films by band gap and defect engineering , 2010 .

[2]  S. Ogale,et al.  Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems , 2010, Advanced materials.

[3]  H. Zhang,et al.  Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property , 2010, Nanotechnology.

[4]  R. Ahuja,et al.  Room temperature ferromagnetism in pristine MgO thin films , 2010 .

[5]  Zhang Xiaosong,et al.  Effects of Annealing Temperature on Structural and Optical Properties of ZnO Thin Films , 2010 .

[6]  J. Coey,et al.  Ferromagnetism in defect-ridden oxides and related materials , 2010, 1003.5558.

[7]  L. H. Van,et al.  Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. , 2010, Physical review letters.

[8]  S. Russo,et al.  Roles of carbon in light emission of ZnO , 2010 .

[9]  Z. Q. Chen,et al.  Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism , 2010 .

[10]  S. Ringer,et al.  Evidence for high- T c ferromagnetism in Zn x ( ZnO ) 1 − x granular films mediated by native point defects , 2009 .

[11]  Qingyu Xu,et al.  Magnetic properties of ZnO nanopowders , 2009 .

[12]  D. Paramanik,et al.  Observation of magnetic domains in undoped ZnO grains at room temperature , 2009 .

[13]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[14]  S. Jokela,et al.  Defects in ZnO , 2009 .

[15]  X. J. Wang,et al.  Oxygen and zinc vacancies in as-grown ZnO single crystals , 2009 .

[16]  T. Butz,et al.  Defect-induced magnetic order in pure ZnO films , 2009 .

[17]  M. Rao,et al.  Optical and electrical resistivity studies of isovalent and aliovalent3dtransition metal ion doped ZnO , 2009 .

[18]  Jeonghwa Yang,et al.  Ferromagnetism induced by Zn vacancy defect and lattice distortion in ZnO , 2009 .

[19]  A. Zunger,et al.  Electronic correlation in anion p orbitals impedes ferromagnetism due to cation vacancies in Zn chalcogenides. , 2009, Physical review letters.

[20]  D. Gao,et al.  Room temperature ferromagnetism of pure ZnO nanoparticles , 2009 .

[21]  A. Tiwari,et al.  Progress in Zno-based diluted magnetic semiconductors , 2009 .

[22]  J. Ding,et al.  Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In 2 O 3-δ nanostructures , 2009 .

[23]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[24]  A. Fazzio,et al.  Surface magnetization in non-doped ZnO nanostructures , 2009, 0904.4147.

[25]  Y. Hao,et al.  P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires , 2009 .

[26]  Jingbo Li,et al.  Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. , 2009, Physical review letters.

[27]  J. Huang,et al.  Room temperature anomalous Hall effect in Co doped ZnO thin films in the semiconductor regime , 2008 .

[28]  J. Ding,et al.  Comparative Study of Room‐Temperature Ferromagnetism in Cu‐Doped ZnO Nanowires Enhanced by Structural Inhomogeneity , 2008 .

[29]  Xiangyin Li,et al.  Effect of K-doping on structural and optical properties of ZnO thin films , 2008 .

[30]  B. Yao,et al.  Influence of hydrostatic pressure on the native point defects in wurtzite ZnO: Ab initio calculation , 2008 .

[31]  M. Helm,et al.  An easy mechanical way to create ferromagnetic defective ZnO , 2008 .

[32]  Qiang Sun,et al.  Zinc Vacancy induced magnetism in ZnO thin films and nanowires , 2008 .

[33]  M. Helm,et al.  Room temperature ferromagnetism in ZnO films due to defects , 2008 .

[34]  J. Sakai,et al.  Ferromagnetism observed in pristine Sn O 2 thin films , 2008 .

[35]  N. Q. Huong,et al.  Can undoped semiconducting oxides be ferromagnetic , 2007 .

[36]  G. Gehring,et al.  Two magnetic regimes in doped ZnO corresponding to a dilute magnetic semiconductor and a dilute magnetic insulator. , 2007, Physical review letters.

[37]  C. Klingshirn,et al.  ZnO: From basics towards applications , 2007 .

[38]  C. Klingshirn ZnO: material, physics and applications. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  S. Banerjee,et al.  Enhancement of ferromagnetism upon thermal annealing in pure ZnO , 2007, cond-mat/0702486.

[40]  Bin Yao,et al.  Room temperature p-n ZnO blue-violet light-emitting diodes , 2007 .

[41]  J. Sakai,et al.  Observation of ferromagnetism at room temperature in ZnO thin films , 2007 .

[42]  C. Rao,et al.  Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides , 2006, 0707.3183.

[43]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[44]  S. Yoon,et al.  Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films , 2006 .

[45]  J. Sakai,et al.  Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films , 2006 .

[46]  Paul Erhart,et al.  First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide , 2006 .

[47]  J. Philip,et al.  Carrier-controlled ferromagnetism in transparent oxide semiconductors , 2006, Nature materials.

[48]  T. Ziman,et al.  Model for vacancy-induced d0 ferromagnetism in oxide compounds. , 2006, Physical review letters.

[49]  Martin M. Frank,et al.  Absence of magnetism in hafnium oxide films , 2005 .

[50]  David P. Norton,et al.  Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy , 2005 .

[51]  R. Kling,et al.  Magnetoresistance in epitaxially grown degenerate ZnO thin films , 2005 .

[52]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[53]  M. Venkatesan,et al.  Magnetism in hafnium dioxide , 2005 .

[54]  S. Sanvito,et al.  Ferromagnetism driven by intrinsic point defects in HfO(2). , 2005, Physical review letters.

[55]  Nick S. Norberg,et al.  Chemical manipulation of high-T(C) ferromagnetism in ZnO diluted magnetic semiconductors. , 2005, Physical review letters.

[56]  M. Venkatesan,et al.  Donor impurity band exchange in dilute ferromagnetic oxides , 2005, Nature materials.

[57]  Wai Kin Chan,et al.  Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods , 2004 .

[58]  J. Coey,et al.  Thin films: Unexpected magnetism in a dielectric oxide , 2004, Nature.

[59]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[60]  S. Ogale,et al.  Co-occurrence of superparamagnetism and anomalous hall effect in highly reduced cobalt-doped rutile TiO2-delta films. , 2004, Physical review letters.

[61]  S. Sarma,et al.  High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta). , 2003, Physical review letters.

[62]  J. Park,et al.  Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films. , 2003, Physical review letters.

[63]  R. K. Roy,et al.  Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique , 2002 .

[64]  Masashi Kawasaki,et al.  Magneto-optical properties of ZnO-based diluted magnetic semiconductors , 2001 .

[65]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[66]  M. Goiran,et al.  Quantum size effect transition in percolating nanocomposite films , 2000, cond-mat/0010209.

[67]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[68]  D. C. Reynolds,et al.  Neutral-Donor-Bound-Exciton Complexes in ZnO Crystals , 1998 .

[69]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[70]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[71]  H. Sakata,et al.  Low‐temperature electrical conductivity and optical absorption edge of ZnO films prepared by chemical vapour deposition , 1995 .

[72]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[73]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[74]  R. Hengehold,et al.  Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide , 1976 .

[75]  Nevill Mott,et al.  Conduction in glasses containing transition metal ions , 1968 .

[76]  J. R. Haynes Experimental Proof of the Existence of a New Electronic Complex in Silicon , 1960 .

[77]  C. Kittel Introduction to solid state physics , 1954 .

[78]  S. Pearton,et al.  Zinc oxide bulk, thin films and nanostructures : processing, properties and applications , 2006 .

[79]  David P. Norton,et al.  Wide band gap ferromagnetic semiconductors and oxides , 2003 .