Symmetry Lie algebras of nth order ordinary differential equations

Abstract We show that an nth (n ⩾ 3) order linear ordinary differential equation has exactly one of n + 1, n + 2, or n + 4 (the maximum) point symmetries. The Lie algebras corresponding to the respective numbers of point symmetries are obtained. Then it is shown that a necessary and sufficient conditon for an nth (n ⩾ 3) order equation to be linearizable via a point transformation is that it must admit the n dimensional Abelian algebra nA1 = A1 ⊕ A1 ⊕ … ⊕ A1. We discuss in detail the symmetry realizations of (n − 1)A1 ⊕s A1. Finally, we prove that an nth (n ⩾ 3) order equation q(n) = H(t, q, …, qn − 1) cannot admit exactly an n + 3 dimensional algebra of point symmetries which is a subalgebra of nA1 ⊕, gl(2, R ).

[1]  F. Neuman Global theory of ordinary linear homogeneous differential equations in the real domain—II , 1987 .

[2]  B. G. Wybourne,et al.  The Lie group of Newton's and Lagrange's equations for the harmonic oscillator , 1976 .

[3]  H. R. Lewis,et al.  Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators , 1968 .

[4]  F. Mahomed,et al.  THE LIE ALGEBRA sl(3, R) AND LINEARIZATION , 1989 .

[5]  P. Olver Applications of lie groups to differential equations , 1986 .

[6]  Fazal M. Mahomed,et al.  Symmetries of nonlinear differential equations and linearisation , 1987 .

[7]  George W. BLUMANt When Nonlinear Differential Equations are Equivalent to Linear Differential Equations , 1982 .

[8]  A. González-López,et al.  Symmetries of differential equations. II , 1980 .

[9]  Fazal M. Mahomed,et al.  Lie algebras associated with scalar second-order ordinary differential equations , 1989 .

[10]  F. Mahomed,et al.  Maximal subalgebra associated with a first integral of a system possessing sl(3,R) algebra , 1988 .

[11]  S. Sayegh,et al.  Symmetries of differential equations , 1986 .

[12]  M. Aguirre,et al.  SL(3,R) as the group of symmetry transformations for all one‐dimensional linear systems , 1988 .

[13]  Jiří Patera,et al.  Subalgebras of real three‐ and four‐dimensional Lie algebras , 1977 .

[14]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[15]  Edmund Pinney,et al.  The nonlinear differential equation ”+()+⁻³=0 , 1950 .

[16]  L. Michel,et al.  Equations différentielles linéaires d'ordre n>2 ayant une algèbre de Lie de symétrie de dimension n+4 , 1988 .