A new model to explain the redundant-signals effect

Le but de cet article est de proposer un modele stochastique a meme d'expliquer entierement l'effet des signaux redondants (redundant-signals effect). Ce modele qui est plus general que ceux presentes jusqu'alors est illustre avec les donnees de Miller (1986) sur le SOA (Stimulus Onset Asynchrony)

[1]  R. Ulrich,et al.  A double-response paradigm to study stimulus intensity effects upon the motor system in simple reaction time experiments , 1984, Perception & psychophysics.

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[3]  Jeff Miller,et al.  Timecourse of coactivation in bimodal divided attention , 1986, Perception & psychophysics.

[4]  R. Schmidt,et al.  On the nature of intersensory facilitation of reaction time , 1983, Perception & psychophysics.

[5]  H Colonius,et al.  Modeling the redundant signals effect by specifying the hazard function , 1988, Perception & psychophysics.

[6]  D. Raab DIVISION OF PSYCHOLOGY: STATISTICAL FACILITATION OF SIMPLE REACTION TIMES* , 1962 .

[7]  R Ratcliff,et al.  Continuous versus discrete information processing modeling accumulation of partial information. , 1988, Psychological review.

[8]  Hans Colonius,et al.  Intersensory facilitation in the motor component? , 1987 .

[9]  H Colonius,et al.  Measuring channel dependence in separate activation models , 1986, Perception & psychophysics.

[10]  R Ulrich,et al.  Separate-activation models with variable base times: Testability and checking of cross-channel dependency , 1986, Perception & psychophysics.

[11]  Jeff Miller,et al.  Divided attention: Evidence for coactivation with redundant signals , 1982, Cognitive Psychology.

[12]  W. Feller Fluctuation theory of recurrent events , 1949 .

[13]  G R Grice,et al.  Combination rule for redundant information in reaction time tasks with divided attention , 1984, Perception & psychophysics.