YM500v3: a database for small RNA sequencing in human cancer research

We previously presented the YM500 database, which contains >8000 small RNA sequencing (smRNA-seq) data sets and integrated analysis results for various cancer miRNome studies. In the updated YM500v3 database (http://ngs.ym.edu.tw/ym500/) presented herein, we not only focus on miRNAs but also on other functional small non-coding RNAs (sncRNAs), such as PIWI-interacting RNAs (piRNAs), tRNA-derived fragments (tRFs), small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). There is growing knowledge of the role of sncRNAs in gene regulation and tumorigenesis. We have also incorporated >10 000 cancer-related RNA-seq and >3000 more smRNA-seq data sets into the YM500v3 database. Furthermore, there are two main new sections, ‘Survival' and ‘Cancer', in this updated version. The ‘Survival’ section provides the survival analysis results in all cancer types or in a user-defined group of samples for a specific sncRNA. The ‘Cancer’ section provides the results of differential expression analyses, miRNA–gene interactions and cancer miRNA-related pathways. In the ‘Expression’ section, sncRNA expression profiles across cancer and sample types are newly provided. Cancer-related sncRNAs hold potential for both biotech applications and basic research.

[1]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[2]  Wei-Chung Cheng,et al.  DriverDBv2: a database for human cancer driver gene research , 2015, Nucleic Acids Res..

[3]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[4]  Jernej Ule,et al.  Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders , 2014, The EMBO journal.

[5]  Kai Blin,et al.  DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation , 2014, Nucleic Acids Res..

[6]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[7]  Xiaoyong Bao,et al.  Respiratory Syncytial Virus Utilizes a tRNA Fragment to Suppress Antiviral Responses Through a Novel Targeting Mechanism. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[8]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[9]  S. Lawler,et al.  MicroRNAs in cancer: biomarkers, functions and therapy. , 2014, Trends in molecular medicine.

[10]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[11]  Wei-Chung Cheng,et al.  DriverDB: an exome sequencing database for cancer driver gene identification , 2013, Nucleic Acids Res..

[12]  D. Haussecker,et al.  Human tRNA-derived small RNAs in the global regulation of RNA silencing. , 2010, RNA.

[13]  J. Miecznikowski,et al.  From small studies to precision medicine: prioritizing candidate biomarkers , 2013, Genome Medicine.

[14]  Gyorgy Hutvagner,et al.  tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression , 2015, Life.

[15]  Wei-Chung Cheng,et al.  YM500v2: a small RNA sequencing (smRNA-seq) database for human cancer miRNome research , 2014, Nucleic Acids Res..

[16]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[17]  S. Volinia,et al.  Non-coding RNAs: a key to future personalized molecular therapy? , 2010, Genome Medicine.

[18]  Alexander van Oudenaarden,et al.  Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. , 2010, Molecular cell.

[19]  Nectarios Koziris,et al.  DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association , 2011, Nucleic Acids Res..

[20]  F. Jiang,et al.  Small nucleolar RNAs in cancer. , 2012, Biochimica et biophysica acta.

[21]  Farrokh Alemi,et al.  Improved Statistical Methods are Needed to Advance Personalized Medicine. , 2009, The open translational medicine journal.

[22]  M. Zhan,et al.  Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis , 2015, Oncotarget.

[23]  Praveen Sethupathy,et al.  Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C , 2015, Scientific Reports.

[24]  Victor Trevino,et al.  SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis , 2014, Bioinform..

[25]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[26]  Yan Guo,et al.  Mining diverse small RNA species in the deep transcriptome. , 2015, Trends in biochemical sciences.

[27]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[28]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[29]  C. Croce,et al.  Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer , 2013, PloS one.

[30]  Annette S. Kim,et al.  Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes , 2015, BMC Genomics.

[31]  H. Dweep,et al.  miRWalk2.0: a comprehensive atlas of microRNA-target interactions , 2015, Nature Methods.

[32]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[33]  I. Thompson,et al.  Elevated snoRNA biogenesis is essential in breast cancer , 2014, Oncogene.

[34]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[35]  Wan L. Lam,et al.  Piwi-interacting RNAs in cancer: emerging functions and clinical utility , 2016, Molecular Cancer.

[36]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[37]  Ujjwal Maulik,et al.  Development of the human cancer microRNA network , 2010 .

[38]  T. Speed,et al.  A Tetrahymena Piwi bound to mature tRNA 3' fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. , 2012, Molecular cell.

[39]  Xiaowei Wang,et al.  miRDB: an online resource for microRNA target prediction and functional annotations , 2014, Nucleic Acids Res..

[40]  O. Slabý,et al.  Small nucleolar RNAs functioning and potential roles in cancer , 2014, Tumor Biology.

[41]  Wen鄄 Dan Chen,et al.  Chinese Anti鄄 Cancer a Ssociation , 2022 .

[42]  Charles E. Vejnar,et al.  miRmap: Comprehensive prediction of microRNA target repression strength , 2012, Nucleic acids research.

[43]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[44]  Wei-Chung Cheng,et al.  YM500: a small RNA sequencing (smRNA-seq) database for microRNA research , 2012, Nucleic Acids Res..

[45]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[46]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[47]  R Hofestädt,et al.  CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types , 2015, Oncogenesis.

[48]  C. Sander,et al.  Analysis of microRNA-target interactions across diverse cancer types , 2013, Nature Structural &Molecular Biology.

[49]  Ling-Chu Chang,et al.  Dietary components as epigenetic-regulating agents against cancer , 2016, BioMedicine.

[50]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[51]  G. Hutvagner,et al.  Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells , 2013, RNA biology.

[52]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[53]  Sampath Kannan,et al.  DASHR: database of small human noncoding RNAs , 2015, Nucleic Acids Res..

[54]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[55]  Chirayu Pankaj Goswami,et al.  PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data , 2012, Journal of Clinical Bioinformatics.