Fibonacci numbers at most one away from a perfect power

The famous problem of determining all perfect powers in the Fibonacci sequence and the Lucas sequence has recently been resolved by three of the present authors. We sketch the proof of this result, and we apply it to show that the only Fibonacci numbers Fn such that Fn ± 1 is a perfect power are 0, 1, 2, 3, 5 and 8. The proof of the Fibonacci Perfect Powers Theorem involves very deep mathematics, combining the modular approach used in the proof of Fermat’s Last Theorem with Baker’s Theory. By contrast, using the knowledge of the all perfect powers in the Fibonacci and Lucas sequences, the determination of the perfect powers among the numbers Fn ± 1 is quite elementary.

[1]  Kenneth A. Ribet,et al.  Modular elliptic curves and fermat's last theorem , 1993 .

[2]  A. Pethö Perfect powers in second order linear recurrences , 1982 .

[3]  Imin Chen On Siegel's Modular Curve of Level 5 and the Class Number One Problem , 1999 .

[4]  Michael A. Bennett,et al.  On the Diophantine equation , 2004 .

[5]  R. Taylor,et al.  On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.

[6]  Karim Belabas,et al.  User’s Guide to PARI / GP , 2000 .

[7]  Michel Laurent,et al.  Formes linéaires en deux logarithmes et déterminants d′interpolation , 1995 .

[8]  C. Siegel Zum Beweise des Starkschen Satzes , 1968 .

[9]  Raphael Finkelstein,et al.  On Fibonacci numbers which are one more than a square. , 1973 .

[10]  M. Mignotte,et al.  Sur les nombres de Fibonacci de la forme qkyp , 2004 .

[11]  Y. Bugeaud,et al.  Bounds for the solutions of Thue-Mahler equations and norm form equations , 1996 .

[12]  T. N. Shorey,et al.  On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .

[13]  Kenneth A. Ribet,et al.  On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .

[14]  H. London,et al.  On Fibonacci and Lucas Numbers which are perfect powers , 1969 .

[15]  W. Ljunggren On the Diophantine Equation $Ax^4-By^2=C$, ($C=1,4$). , 1967 .

[16]  Henri Darmon,et al.  Winding quotients and some variants of Fermat's Last Theorem. , 1997 .

[17]  Michael A. Bennett,et al.  Ternary Diophantine Equations via Galois Representations and Modular Forms , 2004, Canadian Journal of Mathematics.

[18]  J. H. E. Cohn,et al.  On Square Fibonacci Numbers , 1964 .

[19]  M. Mignotte,et al.  Perfect powers from products of terms in Lucas sequences , 2007 .

[20]  J. Cohn Lucas and fibonacci numbers and some diophantine Equations , 1965, Proceedings of the Glasgow Mathematical Association.

[21]  A. Kraus,et al.  Courbes de Fermat: résultats et problèmes , 2002 .

[22]  T. N. Shorey,et al.  Exponential diophantine equations: Index , 1986 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Neville Robbins ON FIBONACCI NUMBERS WHICH ARE POWERS: I I , 1983 .

[25]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[26]  Maurice Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers , 2004 .

[27]  Attila Pethö,et al.  Diophantine properties of linear recursive sequences II. , 1998 .

[28]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[29]  Jannis A. Antoniadis Über die Kennzeichnung zweiklassiger imaginär-quadratischer Zahlkörper durch Lösungen diophantischer Gleichungen. , 1983 .

[30]  Small Prime Powers in the Fibonacci Sequence , 2001, math/0110150.