A re-characterization of hyper-heuristics

Hyper-heuristics are an optimization methodology which ‘search the space of heuristics’ rather than directly searching the space of the underlying candidate-solution representation. Hyper-heuristic search has traditionally been divided into two layers: a lower problem-domain layer (where domain-specific heuristics are applied) and an upper hyper-heuristic layer, where heuristics are selected or generated. The interface between the two layers is commonly termed the “domain barrier”. Historically this interface has been defined to be highly restrictive, in the belief that this is required for generality. We argue that this prevailing conception of domain barrier is so limiting as to defeat the original motivation for hyper-heuristics. We show how it is possible to make use of domain knowledge without loss of generality and describe generalized hyper-heuristics which can incorporate arbitrary domain knowledge.

[1]  Douglas B. Lenat,et al.  EURISKO: A Program That Learns New Heuristics and Domain Concepts , 1983, Artif. Intell..

[2]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[3]  Stuart C. Shapiro Review of Knowledge representation: logical, philosophical, and computational foundations by John F. Sowa. Brooks/Cole 2000. , 2001 .

[4]  Sanja Petrovic,et al.  HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search , 2011, EvoCOP.

[5]  Jerry Swan,et al.  Templar - A Framework for Template-Method Hyper-Heuristics , 2015, EuroGP.

[6]  Jürgen Schmidhuber,et al.  Learning dynamic algorithm portfolios , 2006, Annals of Mathematics and Artificial Intelligence.

[7]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[8]  Ender Özcan,et al.  A Software Interface for Supporting the Application of Data Science to Optimisation , 2015, LION.

[9]  Edmund K. Burke,et al.  A Research Agenda for Metaheuristic Standardization , 2015 .

[10]  Graham Kendall,et al.  Searching the Hyper-heuristic Design Space , 2014, Cognitive Computation.

[11]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[12]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[13]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[14]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[15]  Frank van Harmelen,et al.  A semantic web primer , 2004 .

[16]  Ender Özcan,et al.  Hill Climbers and Mutational Heuristics in Hyperheuristics , 2006, PPSN.

[17]  Ender Özcan,et al.  Hyperion2: a toolkit for {meta-, hyper-} heuristic research , 2014, GECCO.

[18]  Djamila Ouelhadj,et al.  Cooperative search for fair nurse rosters , 2013, Expert Syst. Appl..

[19]  Graham Kendall,et al.  Hyperion - A Recursive Hyper-Heuristic Framework , 2011, LION.

[20]  Robert H. Storer,et al.  Problem and Heuristic Space Search Strategies for Job Shop Scheduling , 1995, INFORMS J. Comput..

[21]  Matthew Hyde Ender,et al.  Multilevel Search for Evolving the Acceptance Criteria of a Hyper-Heuristic , 2009 .

[22]  Jin-Kao Hao,et al.  A Study of Adaptive Perturbation Strategy for Iterated Local Search , 2013, EvoCOP.

[23]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[24]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[25]  John R. Woodward,et al.  The 'composite' design pattern in metaheuristics , 2014, GECCO.

[26]  Peter Ross,et al.  A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems , 1994, ECAI.

[27]  Peter Ross,et al.  A Promising Genetic Algorithm Approach to Job-Shop SchedulingRe-Schedulingand Open-Shop Scheduling Problems , 1993, ICGA.

[28]  Edmund K. Burke,et al.  Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems , 2009, Eur. J. Oper. Res..

[29]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[30]  Ender Özcan,et al.  A tensor-based selection hyper-heuristic for cross-domain heuristic search , 2015, Inf. Sci..

[31]  Peter Ross,et al.  Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics , 2003, GECCO.

[32]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[33]  F. Post,et al.  An Economics Approach to Hard Computational Problems , 1997 .

[34]  Jack Mostow,et al.  Discovering Admissible Heuristics by Abstracting and Optimizing: A Transformational Approach , 1989, IJCAI.

[35]  R. Storer,et al.  New search spaces for sequencing problems with application to job shop scheduling , 1992 .

[36]  Jerry Swan,et al.  Augmenting Metaheuristics with Rewriting Systems , 2014 .

[37]  Olivier Roussel,et al.  XML Representation of Constraint Networks: Format XCSP 2.1 , 2009, ArXiv.

[38]  Ross Quillian,et al.  A NOTATION FOR REPRESENTING CONCEPTUAL INFORMATION. AN APPLICATION TO SEAMANTICS AND MECHANICAL ENGLISH PARAPHRASING , 1963 .

[39]  P. Cowling,et al.  CHOICE FUNCTION AND RANDOM HYPERHEURISTICS , 2002 .

[40]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[41]  Luc De Raedt,et al.  Constraint Programming for Data Mining and Machine Learning , 2010, AAAI.

[42]  Eric Soubeiga,et al.  Development and application of hyperheuristics to personnel scheduling , 2003 .