General framework about defect creation at the Si∕SiO2 interface

This paper presents a theoretical framework about interface state creation rate from Si–H bonds at the Si∕SiO2 interface. It includes three main ways of bond breaking. In the first case, the bond can be broken, thanks to the bond ground state rising with an electrical field. In two other cases, incident carriers will play the main role either if there are very energetic or very numerous but less energetic. This concept allows one to physically model the reliability of metal oxide semiconductor field effect transistors, and particularly negative bias temperature instability permanent part, and channel hot carrier to cold carrier damage.

[1]  S. Krishnan,et al.  Probing negative bias temperature instability using a continuum numerical framework: Physics to real world operation , 2007, Microelectron. Reliab..

[2]  L. Feldman,et al.  Vibrational lifetimes and frequency-gap law of hydrogen bending modes in semiconductors. , 2006, Physical review letters.

[3]  J. McPherson Extended Mie-Grüneisen molecular model for time dependent dielectric breakdown in silica detailing the critical roles of O–SiO3 tetragonal bonding, stretched bonds, hole capture, and hydrogen release , 2006 .

[4]  James H. Stathis,et al.  Atomic hydrogen-induced degradation of thin SiO2 gate oxides , 1995 .

[5]  L. Feldman,et al.  Structure-dependent vibrational lifetimes of hydrogen in silicon. , 2002, Physical review letters.

[6]  H. Ueba,et al.  Elementary processes of vibrationally mediated motions of single adsorbed molecules , 2004 .

[7]  D. Dimaria Defect generation in field-effect transistors under channel-hot-electron stress , 2000 .

[8]  Feldman,et al.  Vibrational lifetime of bond-center hydrogen in crystalline silicon , 2000, Physical review letters.

[9]  A. V. Wieringen,et al.  On the permeation of hydrogen and helium in single crystal silicon and germanium at elevated temperatures , 1956 .

[10]  James Stasiak,et al.  Trap creation in silicon dioxide produced by hot electrons , 1989 .

[11]  Rana Biswas,et al.  Hydrogen Flip Model for Light-Induced Changes of Amorphous Silicon , 1999 .

[12]  Dominique Vuillaume,et al.  Charging and discharging properties of electron traps created by hot‐carrier injections in gate oxide of n‐channel metal oxide semiconductor field effect transistor , 1993 .

[13]  Joshua Jortner,et al.  Vibrational relaxation of a molecule in a dense medium , 1973 .

[14]  S.E. Rauch,et al.  The energy-driven paradigm of NMOSFET hot-carrier effects , 2005, IEEE Transactions on Device and Materials Reliability.

[15]  Fernando Guarin,et al.  Role of E-E scattering in the enhancement of channel hot carrier degradation of deep-submicron NMOSFETs at high V/sub GS/ conditions , 2001 .

[16]  R. E. Walkup,et al.  STM-induced H atom desorption from Si(100): isotope effects and site selectivity , 1996 .

[17]  M. Denais,et al.  NBTI degradation: From physical mechanisms to modelling , 2006, Microelectron. Reliab..

[18]  Bicai Pan,et al.  Enhanced stability of deuterium in silicon , 1998 .

[19]  C. Leung,et al.  A one‐dimensional solution of the Boltzmann transport equation including electron–electron interactions , 1996 .

[20]  Blair R. Tuttle,et al.  Energetics and diffusion of hydrogen in SiO 2 , 2000 .

[21]  M. Denais,et al.  Impacts of the recovery phenomena on the worst-case of damage in DC/AC stressed ultra-thin NO gate-oxide MOSFETs , 2005, Microelectron. Reliab..

[22]  Blair R. Tuttle,et al.  Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon , 1999 .

[23]  K. Stokbro,et al.  First-principles theory of inelastic currents in a scanning tunneling microscope , 1998, cond-mat/9802301.

[24]  James D. Plummer,et al.  A semiclassical model of dielectric relaxation in glasses , 2006 .

[25]  L. Register,et al.  Impact of nanostructure research on conventional solid-state electronics: The giant isotope effect in hydrogen desorption and CMOS lifetime , 1998 .

[26]  Palmer,et al.  Possibility of coherent multiple excitation in atom transfer with a scanning tunneling microscope. , 1994, Physical review. B, Condensed matter.

[27]  Zhi Chen,et al.  Evidence for energy coupling from the Si–D vibration mode to the Si–Si and Si–O vibration modes at the SiO2/Si interface , 2003 .

[28]  P. Avouris,et al.  Cryogenic UHV-STM Study of Hydrogen and Deuterium Desorption from Si(100) , 1998 .

[29]  Y. Kamakura,et al.  Impact ionization model for full band Monte Carlo simulation , 1994 .

[30]  Takahiro Yamasaki,et al.  Nano-scale simulation for advanced gate dielectrics , 2003 .

[31]  Muhammad Ashraful Alam,et al.  A comprehensive model of PMOS NBTI degradation , 2005, Microelectron. Reliab..

[32]  Satoru Watanabe,et al.  Reliability improvement in deep-submicron nMOSFETs by deuterium , 2003 .

[33]  L. Feldman,et al.  Lifetimes of hydrogen and deuterium related vibrational modes in silicon. , 2001, Physical review letters.

[34]  A. Bravaix,et al.  The Energy-Driven Hot-Carrier Degradation Modes of nMOSFETs , 2007, IEEE Transactions on Device and Materials Reliability.

[35]  W. B. Jackson,et al.  Comment on ‘‘Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing’’ [Appl. Phys. Lett. 68, 2526 (1996)] , 1996 .

[36]  Yoshio Nishi,et al.  Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance I , 1971 .

[37]  K. Stokbro,et al.  STM-Induced Hydrogen Desorption via a Hole Resonance , 1998, cond-mat/9802304.

[38]  Avouris,et al.  Role of multiple inelastic transitions in atom transfer with the scanning tunneling microscope. , 1993, Physical review. B, Condensed matter.

[39]  Lang,et al.  Erratum: Field-induced transfer of an atom between two closely spaced electrodes , 1992, Physical review. B, Condensed matter.

[40]  J R Tucker,et al.  Atomic-Scale Desorption Through Electronic and Vibrational Excitation Mechanisms , 1995, Science.

[41]  Bo N. J. Persson,et al.  Local bond breaking via STM-induced excitations: the role of temperature , 1997 .

[42]  Van de Walle Cg,et al.  Structure, energetics, and dissociation of Si-H bonds at dangling bonds in silicon. , 1994 .