Rapid High-fidelity Multiplexed Readout of Superconducting Qubits

The duration and fidelity of qubit readout is a critical factor for applications in quantum information processing as it limits the fidelity of algorithms which reuse qubits after measurement or apply feedback based on the measurement result. Here we present fast multiplexed readout of five qubits in a single 1.2 GHz wide readout channel. Using a readout pulse length of 80 ns and populating readout resonators for less than 250 ns we find an average correct assignment probability for the five measured qubits to be $97\%$. The differences between the individual readout errors and those found when measuring the qubits simultaneously are within $1\%$. We employ individual Purcell filters for each readout resonator to suppress off-resonant driving, which we characterize by the dephasing imposed on unintentionally measured qubits. We expect the here presented readout scheme to become particularly useful for the selective readout of individual qubits in multi-qubit quantum processors.

[1]  Suman Kundu,et al.  Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product , 2015, 1510.03065.

[2]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[3]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[4]  R. J. Schoelkopf,et al.  Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement , 2007 .

[5]  C. K. Andersen,et al.  Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication , 2017, 1709.01030.

[6]  J M Gambetta,et al.  Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise. , 2012, Physical review letters.

[7]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[8]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[9]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[10]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[11]  Alexandre Blais,et al.  Dispersive regime of circuit QED : Photon-dependent qubit dephasing and relaxation rates , 2008, 0810.1336.

[12]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[13]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[14]  W. Marsden I and J , 2012 .

[15]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.

[16]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[17]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[20]  Jay M. Gambetta,et al.  Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics , 2015, 1508.01743.

[21]  T. Gudmundsen,et al.  Thermal and Residual Excited-State Population in a 3D Transmon Qubit. , 2014, Physical review letters.

[22]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[23]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[24]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[25]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[26]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[27]  Andrew W. Cross,et al.  Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code , 2014, 1410.6419.

[28]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[29]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[30]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[31]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[32]  J. Gambetta,et al.  Fast, high-fidelity readout of multiple qubits , 2017 .

[33]  Jay M. Gambetta,et al.  Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon , 2012, 1204.2237.

[34]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[35]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[36]  Stefano Poletto,et al.  Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits , 2012, 1205.6375.

[37]  Y. Salathe,et al.  Realization of Deterministic Quantum Teleportation with Solid State Qubits , 2013 .

[38]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[39]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[40]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[41]  M. A. Rol,et al.  Independent, extensible control of same-frequency superconducting qubits by selective broadcasting , 2015, npj Quantum Information.

[42]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[43]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[44]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[45]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[46]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[47]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[48]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[49]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[50]  Andrew G. Glen,et al.  APPL , 2001 .

[51]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[52]  Alexandre Blais,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006 .

[53]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[54]  M. Roukes,et al.  A low-noise series-array Josephson junction parametric amplifier , 1996 .

[55]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[56]  V. Schmitt,et al.  Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers , 2014, 1409.5647.

[57]  John Clarke,et al.  Heralded state preparation in a superconducting qubit. , 2012, Physical review letters.

[58]  C. C. Bultink,et al.  General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED , 2017, 1711.05336.

[59]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[60]  B. Yurke,et al.  Bell's-inequality experiments using independent-particle sources. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[61]  John M. Martinis,et al.  Quantum theory of a bandpass Purcell filter for qubit readout , 2015, 1504.06030.