Proximity Operations of Formation-Flying Spacecraft Using an Eccentricity/Inclination Vector Separation

The implementation of synthetic apertures by means of a distributed satellite system requires tight control of the relative motion of the participating satellites. This paper investigates a formation-flying concept able to realize the demanding baselines for aperture synthesis, while minimizing the collision hazard associated with proximity operations. An elegant formulation of the linearized equations of relative motion is discussed and adopted for satellite formation design. The concept of eccentricity/inclination-vector separation, originally developed for geostationary satellites, is here extended to low-Earth-orbit (LEO) formations. It provides immediate insight into key aspects of the relative motion and is particularly useful for orbit control purposes and proximity analyses. The effects of the relevant differential perturbations acting on an initial nominal configuration are presented, and a fuel-efficient orbit control strategy is designed to maintain the target separation. Finally, the method is applied to a specific LEO formation (TanDEM-X/TerraSAR-X), and realistic simulations clearly show the simplicity and effectiveness of the formation-flying concept.

[1]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[2]  R. K. Cheng,et al.  TERMINAL GUIDANCE SYSTEM FOR SOFT LUNAR LANDING , 1962 .

[3]  M. P. Jarnagin,et al.  Expansions in Elliptic Motion, Constituting Volume XVIII of Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac , 1967 .

[4]  J. How,et al.  Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits , 2000 .

[5]  David Folta,et al.  A Formation Flying Technology Vision , 2000 .

[6]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[7]  David Folta,et al.  Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1) , 2001 .

[8]  O. Montenbruck,et al.  FLIGHT DYNAMICS ASPECTS OF THE GRACE FORMATION FLYING , 2001 .

[9]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[10]  H. Schaub,et al.  J2 Invariant Relative Orbits for Spacecraft Formations , 2001 .

[11]  C. Sabol,et al.  Satellite Formation Flying Design and Evolution , 2001 .

[12]  R. Sedwick,et al.  High-Fidelity Linearized J Model for Satellite Formation Flight , 2002 .

[13]  F. Hadaegh,et al.  A survey of spacecraft formation flying guidance , 2002 .

[14]  K. Alfriend,et al.  State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit , 2003 .

[15]  U. Feucht,et al.  Attitude Impact on the GRACE Formation Orbit , 2003 .

[16]  M. Kirschner FIRST RESULTS ON THE IMPLEMENTATION OF THE GRACE FORMATION , 2003 .

[17]  E. Gill Description of Keplerian Relative Satellite Motion in an Orbital Reference Frame , 2003 .

[18]  J. Junkins,et al.  Spacecraft Formation Flying , 2003 .

[19]  M. Eineder,et al.  Precise ground-In-the-loop orbit control for low earth , 2004 .

[20]  G. Krieger,et al.  Close Formation Flight of Passive Receiving Micro-Satellites , 2004 .

[21]  Gerhard Krieger,et al.  TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[22]  S. Campagnola,et al.  GENERATION OF AN OPTIMUM TARGET TRAJECTORY FOR THE TERRASAR-X , 2004 .

[23]  N. Kasdin,et al.  Bounded, periodic relative motion using canonical epicyclic orbital elements , 2005 .

[24]  Oliver Montenbruck,et al.  Autonomous Formation Flying for the PRISMA Mission , 2007 .