Rational omega-Transductions

The rational ω-transductions (defined by F. Gire as bimorphisms) are particular transductions for infinite words. In this paper we give characterizations of these transductions. On the one hand they coincide with the compositions of non erasing and inverse non erasing morphisms, and only three morphisms are necessary. On the other hand they can be defined from bifaithful rational transductions using a limit operation we call adherence.

[1]  Erick Timmerman The Three Subfamilies of Rational omega-Languages Closed under omega-Transduction , 1990, Theor. Comput. Sci..

[2]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[3]  Christiane Frougny Systemes de numeration lineaires et automates finis , 1989 .

[4]  Michel Latteux,et al.  On the Composition of Morphisms and Inverse Morphisms , 1983, ICALP.

[5]  Karel Culik,et al.  Equivalence Problems for Mappings on Infinite Strings , 1981, Inf. Control..

[6]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[7]  Ludwig Staiger Sequential Mappings of omega-Languages , 1987, RAIRO Theor. Informatics Appl..

[8]  Juhani Karhumäki,et al.  A note on morphic characterization of languages , 1983, Discret. Appl. Math..

[9]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[10]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[11]  Masako Takahashi,et al.  A Note on omega-Regular Languages , 1983, Theor. Comput. Sci..

[12]  Michel Latteux,et al.  Two Characterizations of Rational Adherences , 1986, Theor. Comput. Sci..

[13]  Danièle Beauquier,et al.  Codeterministic Automata on Infinite Words , 1985, Inf. Process. Lett..

[14]  M. Nivat,et al.  Relations rationnelles infinitaires , 1984 .

[15]  Michel Latteux,et al.  Bifaithful Starry Transductions , 1988, Inf. Process. Lett..

[16]  Françoise Gire Une extension aux mots infinis de la notion de transduction rationelle , 1983 .

[17]  L. Staiger Research in the theory of Ω-languages , 1987 .

[18]  Maurice Nivat,et al.  Adherences of Languages , 1980, J. Comput. Syst. Sci..